APPLICATION BRIEF

ICP – Mass Spectrometry

Authors:

Ewa Pruszkowski Cynthia Bosnak PerkinElmer, Inc. Shelton, CT

A PerkinElmer Authorized Agent

Analysis of Plant Materials for Toxic and Nutritional Elements with the NexION ICP-MS

Introduction

Plants primarily serve as a food substance, being an important source of nutrients. However, toxic elements can

also be found in plants, primarily through uptake from the soil, water, and fertilizer. Therefore, it is important to measure both the nutritional and toxic elemental content of plants and plant materials.

Several challenges arise in the elemental analysis of plants. First, because both toxic and nutritional elements must be measured, a wide dynamic range is required. Plants are complex biological entities which require sample preparation, usually consisting of homogenization followed by digestion in order to break down the complex matrix and extract the elements. Despite these steps, matrix-induced spectral interferences still persist which could cause false readings, especially for the toxic elements. Therefore, Collision or Reaction Cell technology has to be used to remove the interferences.

One plant species which is gaining considerable interest in the U.S. is cannabis (i.e. marijuana) since its use has been legalized in several states, both for recreational and medicinal purposes through inhalation and consumption in food products. With its increased use, interest in the toxic and mineral element content has also risen.

An additional challenge of cannabis analysis in the U.S. is legally attaining samples, since it is illegal in some states. However, hops are a generally accepted surrogate for cannabis due to its similar chemical and physical properties.

This work discusses the analysis of hops (as a surrogate for cannabis) for both toxic and nutritional elements with ICP-MS.

Experimental

Sample Preparation

Hops were purchased from a commercial store and chopped into small pieces, both to homogenize the sample and expose more surface area for increased digestion efficiency. The Titan MPS[™] microwave sample preparation system with the standard 75 mL PTFE vessels was used for digestion, following the program in Table 1. Each vessel contained 0.25 g of plant material, 5.0 mL of concentrated nitric acid, 5.0 mL water, and 3.0 mL of 30% hydrogen peroxide. After digestion, the samples were diluted to 50 mL with deionized water, along with the addition of gold (Au) to stabilize mercury (200 µg/L Au in the final solution).

Table 1. Titan MPS Microwave Digestion Program

Step	Target Temp (°C)	Pressure, Max (bar)	Ramp Time (min)	Hold Time (min)	Power
1	150	30	5	5	60
2	200	30	5	20	90
3	50	30	1	10	0

Instrumental Conditions

All analyses were performed on a PerkinElmer NexION[®] ICP-MS with the standard sample introduction components and conditions. The elements and analysis mode used are shown in Table 2. The internal standards were added on-line via a mixing tee. The final concentration introduced to the instrument were 10 mg/L Sc, 5 mg/L Ge, and 0.1 mg/L Rh, In, Tb in 10% methanol and 1% nitric acid. Using both Standard and Collision modes, the analysis time was 100 seconds per sample.

Results and Discussion

Table 3 shows the average results for two digestions of hops. To test the accuracy, pre-digestion spikes were added for those elements present at less than 50 mg/kg. The spike levels were 20 mg/L for all elements, except Hg, which was spiked at 2 mg/L. All spike recoveries were within 15% of the added amounts, further validating the methodology.

Table 2. Elements and Analysis Mode

Table 2. Elements and Analysis Mode							
Element	Mass	Mode					
Beryllium (Be)	9	Standard					
Boron (B)	11	Standard					
Sodium (Na)	23	Collision					
Magnesium (Mg)	24	Collision					
Aluminum (Al)	27	Collision					
Phosphorus (P)	31	Collision					
Sulfur (S)	34	Collision					
Potassium (K)	39	Collision					
Calcium (Ca)	44	Collision					
Vanadium (V)	51	Collision					
Chromium (Cr)	52	Collision					
Manganese (Mn)	55	Collision					
Iron (Fe)	56	Collision					
Cobalt (Co)	59	Collision					
Nickel (Ni)	60	Collision					
Copper (Cu)	63	Collision					
Zinc (Zn)	66	Collision					
Arsenic (As)	75	Collision					
Selenium (Se)	78	Collision					
Strontium (Sr)	88	Collision					
Molybdenum (Mo)	95	Collision					
Cadmium (Cd)	111	Collision					
Tin (Sn)	118	Standard					
Antimony (Sb)	121	Standard					
Barium (Ba)	137	Standard					
Mercury (Hg)	202	Standard					
Thallium (Tl)	205	Standard					
Lead (Pb)	208	Standard					
Thorium (Th)	232	Standard					
Uranium (U)	238	Standard					

Table 3. Results for Analysis of Hops

Element	Experimental (mg/kg)	% Recovery	
Be	0.00	86	
В	27.7	106	
Na	13.2	113	
Mg	3617		
Al	10.8	108	
Р	6580		
S	2001		
К	34358		
Ca	10936		
V	0.04	101	
Cr	0.23	96	
Mn	17.3	113	
Fe	58.6		
Со	1.33	105	
Ni	2.27	107	
Cu	6.27	90	
Zn	31.8	122	
As	0.03	100	
Se	0.20	102	
Sr	17.9	99	
Мо	0.93	102	
Cd	0.02	97	
Sn	0.28	96	
Sb	0.01	96	
Ва	18.1	94	
Hg	0.04	97	
TI	0.00	88	
Pb	0.65	87	
Th	0.00	95	
U	0.00	95	

Conclusions

This work has demonstrated the ability of the NexION ICP-MS, combined with a Titan MPS microwave, to effectively analyze hops (as a surrogate for cannabis) for both nutritional and toxic elements. Analyses are accomplished in both Collision and Standard modes and require only 100 seconds per sample. The accuracy of the applied method was previously validated by analyzing a variety of NIST[™] plant materials¹.

References

1. Bosnak, C., Pruszkowski, E., "The Determination of Toxic, Essential, and Nutritional Elements in Food Matrices Using the NexION 300/350 ICP-MS", PerkinElmer Application Note.

Consumables Used

Component	Description	Part Number
Sample Uptake Tubing	0.38 mm id (green/orange), PVC, flared, 2-stop	N0777042
Drain Tubing	1.30 mm id (gray, gray), Santoprene, 2-stop	N0777444
Internal Standard Addition Tee	Tee for on-line addition of internal standard	N0777295
Internal Standard Uptake Tubing	0.25 mm id (red/orange), PVC, flared, 2-stop	N0773111
Multielement Standard Solution	100 mg/L Ag, Al, As, Ba, Ve, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Mo, Na, Ni, Pb, Sb, Se, Sn, Sr, Tl, V, Zn	N9301721 (125 mL)
Multielement Salt Solution	1000 mg/L Ca, Mg, Na, K	N9307805 (125 mL)
Mercury Solution	10 mg/L Hg	N9300253 (125 mL)
Internal Standard Solution	Sc (100 mg/L), Ge (50 mg/L), and In, Rh, Tb (1 mg/L)	N9308592 (125 mL)
Pure-Grade Au Standard	1000 mg/L	N9303728 (125 mL)
Autosampler Tubes	Conical, metal-free, sterile	N0776118 (15 mL) N0776116 (50 mL)

Kirsten Blake, Director of Sales | Emerald Scientific | 805.235.5353 |

www.emeraldscientific.com

PerkinElmer, Inc. 940 Winter Street Waltham, MA 02451 USA P: (800) 762-4000 or (+1) 203-925-4602 www.perkinelmer.com

For a complete listing of our global offices, visit www.perkinelmer.com/ContactUs

Copyright ©2015-2018, PerkinElmer, Inc. All rights reserved. PerkinElmer® is a registered trademark of PerkinElmer, Inc. All other trademarks are the property of their respective owners.

PKI