APPLICATION NOTE

Liquid Chromatography

Authors

Padmaja Prabhu William Goodman Wilhad Reuter

PerkinElmer, Inc. 710 Bridgeport Avenue Shelton, CT 06484 USA

Fast Analysis of Fat-SolubleVitamins Using Flexar FX-10and Chromera CDSVitamins are essentNumerous system

Vitamins are essential nutrients and used in numerous systems throughout the human

body. Vitamins are divided into two groups: water-soluble (B-complex and C) and fatsoluble (A, D, E and K). Water-soluble vitamins have limited retention in the body and need regular replacement. Fat-soluble vitamins are stored in the liver and fatty tissues, allowing accumulation and consumption over time.

The determination of vitamin content in foods is important in quality, labeling and marketing. Europe and the United States require food products to be clearly labeled with nutritional information; the vitamin content is required on the label.

Supplements and functional foods are intended to provide health benefits to consumers-these products often contain vitamins. Vitamins, D and E are commonly marketed in supplements because of their role in calcium absorption of bones and antioxidant properties, respectively.

A reliable and fast determination of fat-soluble vitamins in food and supplement products is important in complying with regulations and controlling the quality and safety of products. This application note will present a fast and robust method for the determination of fat-soluble vitamins using UHPLC. An optimized separation of vitamins A acetate, K2, D2, D3, E succinate, E acetate and K1 using the PerkinElmer[®] Flexar[™] UHPLC system is presented. Calibration of the UHPLC system and analysis of the vitamins in a commercial supplement will be presented.

Experimental

The PerkinElmer Flexar FX-10 UHPLC system was used throughout this application. A 1.5 µm particle, 50 mm length, 2.1 mm id, C18 column provided ample resolution and short run times. This column required an operating pressure of approximately 8000 psi resulting in a mobile phase flow rate of approximately 0.7 mL/min. A Flexar UV/Vis detector was operated at wavelengths specific to each vitamin, see Table 1. The instrument interaction, data analysis, and reporting was completed with the PerkinElmer Chromera[®] data system. The detailed operating parameters of the UHPLC system are presented in Table 1.

Table 1: Detailed analytical conditions for the Flexar LC.

E .		Flex	ar FX-10)			
Autosampler			Flexar UHPLC				
Detector			Flexar UV-Vis				
Column			Grace Vision HL B C18, 100 mm x 1.5 μm, 2.1 mm i.d.				
nperatur	e	40°0	2				
Detector wavelength			(min)	W	Wavelength (nm)		
		0.00		32	25		
		2.40		24	248		
		3.60		26	265		
		4.50		28	285		
		6.20		24	248		
		7.50		32	25		
olume		2 μL	Fixed lo	оор			
		0.7 r	nL/min				
Mobile phase			A: Water, pH adjusted to 3.0 w/ o- phosphoric acid:Methanol (1:1)				
		pho	sphoric a	, acid:1	Metha	nol (1:1)	
		pho: B: A	sphoric a	, acid:1 ile	Metha	nol (1:1)	
rogram		pho: B: A	sphoric a	acid:1	Metha	nol (1:1)	
rogram Time	Flow	phos B: A v	sphoric a cetonitr % A	acid:1 ile %	Metha B	nol (1:1) Curve	
rogram Time	Flov (min	phos B: A v	sphoric a cetonitr % A (mL/min	ncid:l ile %	Metha B	nol (1:1) Curve	
rogram Time 3.0	Flov (min 0.8	phos B: A v	sphoric a cetonitr % A (mL/min 20	ncid:1 ile % n) 80	Metha B 0	nol (1:1) Curve 0	
rogram Time 3.0 3.5	Flov (min 0.8 0.8	phos B: A v)	sphoric a cetonitr: % A (mL/min 20 20	ncid:1 ile % n) 80 80	Metha B 0 0	nol (1:1) Curve 0 1	
rogram Time 3.0 3.5 1.0	Flov (min 0.8 0.8 0.8	phos B: A v	sphoric a cetonitri % A (mL/min 20 20 0	acid:1 ile % n) 8(8(1)	Metha B 0 0 00	nol (1:1) Curve 0 1 1	
rogram Time 3.0 3.5 1.0 2.0	Flov (min 0.8 0.8 0.8 0.8	phos B: A v	sphoric a cetonitri % A (mL/min 20 20 0 0	acid:1 ile % 1) 8(1(1)	Metha B 0 0 0 00	nol (1:1) Curve 0 1 1 1	
	: er nperatur avelength olume ise	er nperature avelength olume	 Flex. Flex. Flex. Grad x 1.5 mperature 40°C avelength Time 0.00 2.40 3.60 4.50 6.20 7.50 olume 2 μL 0.7 π ase A: V 	 Flexar FX-10 Flexar UHPI Flexar UV-Vi Grace Visior x 1.5 μm, 2.1 mperature 40°C avelength Time (min) 0.00 2.40 3.60 4.50 6.20 7.50 olume 2 μL Fixed lo 0.7 mL/min ase A: Water, pH 	 Flexar FX-10 Flexar UHPLC Flexar UUV-Vis Grace Vision HL x 1.5 μm, 2.1 mm avelength Time (min) W 0.00 32 2.40 <	Flexar FX-10 Flexar VAPLC Flexar UHPLC Flexar UV-Vis Grace Vision HL B C18 x 1.5 µm, 2.1 mm i.d. avelength Time (min) Vaveler 0.00 325 2.40 248 3.60 265 4.50 285 6.20 248 7.50 325 olume 2 µL Fixed loop 0.7 mL/min ase A: Water, pH adjusted to the second seco	

Figure 1: Overlaid chromatogram of three replicates analyses of calibration standard level 4.

Standard preparation (stock): The standards were procured from Chromadex. 10 mg of Vitamin A acetate, Vitamin K2, Vitamin D3, Vitamin E succinate and Vitamin E acetate were dissolved in water and acetonitrile (2:8) to give a solution of 1000 μ g/mL (ppm). 5 mg of Vitamin D2, Vitamin K1 were dissolved in water and acetonitrile (2:8) to give a solution of 500 μ g/mL each. These stock solutions were further diluted to create the calibration levels presented in Table 2.

Table 2: Detailed	dilution scheme for	or preparation o	f calibration	standards.
-------------------	---------------------	------------------	---------------	------------

Cal level no.	Concentration in µg/mL						
	А	K2	D2	D3	E-s	E-a	K1
1.	0.5	2	2	2	20	20	2
2.	1.0	4	4	4	40	40	4
3.	1.5	6	6	6	60	60	6
4.	2.0	8	8	8	80	80	8
5.	2.5	10	10	10	100	100	10
6.	3.0	12	12	12	120	120	12

The UV detector was calibrated with a linear response across the range of 0.5-3.0 μ g/mL for vitamin A; 2-12 μ g/mL for vitamins K and D; and 20-120 μ g/mL for vitamin E, the details are presented in Table 2.

Table 3: Calibration data for the determination of fat-soluble vitamins.

Vitamin	r ²
А	0.9997
K2	0.9989
D2	0.9999
D3	0.9999
E-s	0.9996
E-a	0.9997
K1	0.9994

Sample preparation: The developed method was used to determine the fat-soluble vitamin content of commercially available formulations. The samples were crushed, weighed and sonicated in 10 mL of (2:8) water : acetonitrile. All samples were filtered through 0.2 micron nylon filters. Furthermore, 1 mL of the sample solution was diluted to 5 mL. Finally, 1 mL of the latter solution is then further diluted to 10 mL and injected.

Discussion

Commercially available supplements were analyzed for fat-soluble vitamin content. Using the method developed here, the analytical run was 7.5 minutes with an elution order of Vitamin A acetate, Vitamin K2, Vitamin D2, Vitamin D3, Vitamin E succinate, Vitamin E acetate, and Vitamin K1. All the peaks were well resolved and the resolution between the closest eluting pair is 1.7. The conventional HPLC method, with a 50-minute gradient run, was reduced to a 6.5-minute run with the FX-10. This method has also decreased the solvent used per sample to 5.25 mL. When compared to conventional HPLC, this directly translates into solvent savings of approximately 45 mL per sample, or a reduction of 90% in solvent usage and waste generation.

Conclusions

An improved determination of vitamins using UHPLC is demonstrated in this application. Using a Flexar FX-10 UHPLC system in combination with a small particle ($1.5 \mu m$) LC column, five fat-soluble vitamins were rapidly determined in commercial vitamin supplements.

In comparison to conventional HPLC, this UHPLC method offers over 6-times faster chromatography while reducing solvent consumption by 90%. This not only improves productivity, but greatly reduces operating costs and the environmental footprint of the analysis.

Figure 4: Example chromatogram of the analysis of fat-soluble vitamins in a commercial formulation.

PerkinElmer, Inc. 940 Winter Street Waltham, MA 02451 USA P: (800) 762-4000 or (+1) 203-925-4602 www.perkinelmer.com

For a complete listing of our global offices, visit www.perkinelmer.com/ContactUs

Copyright ©2010, PerkinElmer, Inc. All rights reserved. PerkinElmer® is a registered trademark of PerkinElmer, Inc. All other trademarks are the property of their respective owners.