## Gas Chromatography

# VOCs in Water Using Static Headspace GC/MS

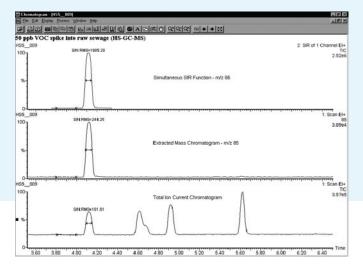



Figure 1. Sensitivity enhancement (50 ppb level) - Simultaneous Full Scan/SIR.

### Introduction

**FIELD** 

APPLICATION REPORT

The combination of static headspace sample introduction and gas chromatography/mass spectrometry (HS/GC/MS) provides the analyst with a powerful, fully automated technique for the determination of trace volatile organic compounds (VOCs) in water. Samples may be hermetically sealed in the headspace vial at the point of sampling. This approach avoids errors due to glassware cross-contamination and loss of volatile components during liquid sample transfers.

Precision is highly dependent on the reproducibility of the thermostatting and sampling procedure. On the PerkinElmer® HS 40XL automated headspace sampler used here, the samples are intelligently queued in an oven that is machined from a solid metal block to provide unparalleled temperature stability. Samples are transferred to the head of the capillary column via an inert fused-silica transfer line using a pressure-balanced sampling system. This unique approach to headspace sampling, which has been a feature of PerkinElmer systems for some 30 years, avoids contact of the sample components with materials used in valve rotors and sample loops.

There is also a link between precision and detection limits. By definition, it is difficult to get excellent reproducibility for analytes present at or near the limits of detection. Anything that improves the detection limits (signal-to-noise ratio) of the analytical method is also likely to prove beneficial in terms of precision.

The PerkinElmer TurboMass<sup>™</sup> mass spectrometer utilizes MS methods that are composed of "scan functions." No restrictions exist to prevent mixing full-scan functions and the monitoring of specific ions using Selected Ion Recording (SIR), also called Selected Ion Monitoring (SIM). Under normal full-scan conditions, it is likely that any particular mass (for example, m/z 78) is only being monitored for 1 to 2 milliseconds in each scan. Adding a SIR function lasting for 0.02 to 0.05 seconds to the same run increases the scan duration by only a few percent. However, this same SIR function means that the specific mass is being monitored for a dedicated 20 to 50 milliseconds, yielding a dramatic increase in the signal-to-noise ratio and, thus, sensitivity.



| <i>Table 1.</i> Instrument Conditions: The following conditions can be used with any recent model PerkinElmer GC/                     |
|---------------------------------------------------------------------------------------------------------------------------------------|
| MS-Headspace Sampler system (Autosystem XL/TurboMass with HS 40XL or Clarus <sup>®</sup> 500 GC/MS with TurboMatrix <sup>™</sup> HS). |

| Gas Chromatograph         |                                                                        |                                                     |                                               |  |  |  |
|---------------------------|------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------|--|--|--|
| Gas chromatograph         | AutoSystem XL <sup>™</sup> Gas Chromatograph                           |                                                     |                                               |  |  |  |
| Column                    | 50 m x 0.32 mm x 1.0 μm film thickness, 5%-phenyl, methyl silicone     |                                                     |                                               |  |  |  |
| Carrier                   | Helium, 4 mL/min for 0.25 min, then 8 mL/min down to 2 mL/min and hold |                                                     |                                               |  |  |  |
| Oven temperature          | 50 °C for 3 min, 10 °C/min to 180 °C, hold for 2 min                   |                                                     |                                               |  |  |  |
| Injector temperature      | 180 °C, PSS (Programmable Split/Splitless) with narrow bore liner      |                                                     |                                               |  |  |  |
| Split flow                | 10 mL/min                                                              |                                                     |                                               |  |  |  |
| Headspace Sampler         |                                                                        |                                                     |                                               |  |  |  |
| Headspace sampler         | HS 40XL                                                                | Automatic Headspace                                 | Sampler                                       |  |  |  |
| Oven time                 | 30 min w                                                               | rith shaker on                                      |                                               |  |  |  |
| Pressurization time       | 3.0 min                                                                |                                                     |                                               |  |  |  |
| Inject time               | 0.06 min                                                               |                                                     |                                               |  |  |  |
| Oven temperature          | 60 °C                                                                  |                                                     |                                               |  |  |  |
| Needle temperature        | 110 °C                                                                 |                                                     |                                               |  |  |  |
| Transfer-line temperature | 120 °C                                                                 |                                                     |                                               |  |  |  |
| Mass Spectrometer         |                                                                        |                                                     |                                               |  |  |  |
| Mass spectrometer         | TurboMa                                                                | TurboMass Mass Spectrometer                         |                                               |  |  |  |
| Transfer-line temperature | 225 °C                                                                 |                                                     |                                               |  |  |  |
| Ion-source temperature    | 150 °C                                                                 |                                                     |                                               |  |  |  |
| Mode                      | EI, Full S                                                             | can with Selected Ion I                             | Recording                                     |  |  |  |
| Full-scan function $(1)$  | m/z 45 to                                                              | m/z 45 to 200 in 0.40 sec with 0.05 interscan delay |                                               |  |  |  |
| SIR functions (2-8)       | One to three ions monitored                                            |                                                     |                                               |  |  |  |
|                           | Dwell tin                                                              | Dwell time = 0.02 sec                               |                                               |  |  |  |
|                           | Interchannel delay = 0.01 sec                                          |                                                     |                                               |  |  |  |
|                           | Span = (Daltons) 0.5                                                   |                                                     |                                               |  |  |  |
| Monitored Masses          | Masses                                                                 | Function Number                                     | Analyte Name                                  |  |  |  |
|                           | 83                                                                     | 2                                                   | Chloroform                                    |  |  |  |
|                           | 97                                                                     | 3                                                   | Trichloroethane                               |  |  |  |
|                           | 62                                                                     | 3                                                   | 1,2-Dichloroethane                            |  |  |  |
|                           | 78                                                                     | 3                                                   | Benzene                                       |  |  |  |
|                           | 130                                                                    | 4                                                   | Trichloroethylene                             |  |  |  |
|                           | 91                                                                     | 5                                                   | Toluene                                       |  |  |  |
|                           | 166                                                                    | 6                                                   | Tetrachloroethylene                           |  |  |  |
|                           | 91                                                                     | 7                                                   | Ethyl Benzene, m,p & o-xylene, propyl benzene |  |  |  |
|                           | 104                                                                    | 7                                                   | Styrene                                       |  |  |  |
|                           | 105                                                                    | 7                                                   | 1,2,4-Trimethyl Benzene                       |  |  |  |
|                           | 180                                                                    | 8                                                   | 1,3,5 & 1,2,4 & 1,2,3 Trichlorobenzene        |  |  |  |

### Results

In the following example, a raw sewage sample was spiked with a VOC standard at both the 50 ppb and 5 ppb level. The samples were then analyzed using HS/GC/MS under the conditions shown in Table 1. Figures 1 and 2 demonstrate the sensitivity enhancement obtained using simultaneous acquisition of full-scan and SIR data for the two spiked samples. Figure 3 shows the precision obtained for seven runs of the 50-ppb spiked sample. The data in Table 2 illustrate the retention time and area repeatability obtained for both samples. These results demonstrate that combining full scan functions and the monitoring of specific ions using SIR increase sensitivity, while maintaining excellent repeatability. In this example, an approximately 8-fold improvement in signal-to-noise was obtained. Larger improvements are possible with longer SIR dwell times.

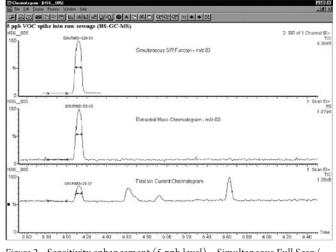



Figure 2. Sensitivity enhancement (5 ppb level) – Simultaneous Full Scan/ SIR.

| Shiomatogram - [HS5_<br>Ele Edit Display Pro |      | M,HS5_005,I<br>Helo | ISS_006,H | IS5_007,HS5_000,HS | 5_009]     |                                |       |                | - 0                 |
|----------------------------------------------|------|---------------------|-----------|--------------------|------------|--------------------------------|-------|----------------|---------------------|
|                                              |      | ~ [12] - 프 [12]     |           | 100000             | Q* 110 + 5 |                                |       |                |                     |
| 5_009<br>6<br>4.12 4.81 4.92                 | 5.63 | 7.07                | 8.01      | 9.26 9.77          | 10.96      | 50 ppb spiked<br>sewage sample | 14.33 | 15.11<br>15.6  | 1: Scan E<br>9 6.00 |
| 4.12 4.61 4.92                               | 5.62 | 7.07                | 8.00      | 9.26 9.77          | 10.98      |                                | 14.33 | 15.11 15.61    | 1: Scan E<br>8 6.00 |
| 4.12 4.61 4.92                               | 5.63 | 7.08                | 8.01      | 9.26 9.77          | 10.97      |                                | 14.33 | 15,11<br>15,81 | 1: Scan  <br>9 6.0  |
| 4.12 4.61 4.92                               | 5.63 | 7.08                | 8.01      | 9.27 9.78          | 10.97      |                                | 14.33 | 15.11<br>15.0  | 1: Scan  <br>9 6.0  |
| 4.12 4.62 4.93                               | 5.63 | 7.08                | 8.01      | 9.26 9.77          | 10.97      |                                | 14,33 | 15.11<br>15.6  | 1: Scan<br>9 6.0    |
| 4.12 4.61 4.92                               | 5.63 | 7.07                | 8.01      | 9.26 9.77          | 10.96      |                                | 14,33 | 15.10<br>15.81 | 1: Scan<br>0 6.0    |
| 4.11 4.61 4.92                               | 5.62 | 7.07                | 8.00      | 9.26 9.77          | 10.96      |                                | 14,33 | 15.10<br>15.6  |                     |
| 4.00 5.00                                    | 6.00 | 7.00                | 8.00      | 9.00 10.00         | 11.00 12.0 | 0 13.00                        | 4.00  | 15.00 1        | 6.00 Ti             |

Figure 3. Precision using Headspace GC/MS – Simultaneous Full Scan/SIR.

| Table 2. Precision Summary for Sever | Runs each of a 5-ppb and 50-ppb Spike |
|--------------------------------------|---------------------------------------|
| of VOCs in Raw Sewage.               |                                       |

| 50-ppb Spike<br>Compound | 5-ppb Spike<br>RT SD | Area %RSD | RT SD | Area %RSD |
|--------------------------|----------------------|-----------|-------|-----------|
| Chloroform               | 0.004                | 2.91      | 0.004 | 0.96      |
| Trichloroethane          | 0.003                | 2.40      | 0.005 | 0.90      |
| 1,2-Dichloroethane       | 0.000                | 3.08      | 0.000 | 1.52      |
| Benzene                  | 0.004                | 3.01      | 0.004 | 8.58*     |
| Trichloroethylene        | 0.000                | 2.08      | 0.001 | 1.50      |
| Toluene                  | 0.004                | 2.14      | 0.003 | 13.54*    |
| Tetrachloroethylene      | 0.004                | 1.18      | 0.004 | 1.42      |
| Ethyl Benzene            | 0.004                | 2.29      | 0.004 | 1.10      |
| m- and p-Xylene          | 0.005                | 2.45      | 0.005 | 1.18      |
| Styrene                  | 0.004                | 2.25      | 0.005 | 2.97      |
| o-Xylene                 | 0.005                | 2.52      | 0.004 | 1.52      |
| Propyl Benzene           | 0.003                | 1.97      | 0.004 | 0.87      |
| 1,2,4-Trimethylbenzene   | 0.004                | 1.61      | 0.004 | 2.57      |
| 1,3,5-Trichlorobenzene   | 0.004                | 1.21      | 0.004 | 0.97      |
| 1,2,4-Trichlorobenzene   | 0.004                | 0.80      | 0.004 | 1.85      |
| 1,2,3-Trichlorobenzene   | 0.004                | 0.77      | 0.030 | 2.08      |

\*Subject to adsorption/biological degradation by solid matrix present in the sample.

#### PerkinElmer, Inc. 940 Winter Street Waltham, MA 02451 USA P: (800) 762-4000 or (+1) 203-925-4602 www.perkinelmer.com



For a complete listing of our global offices, visit www.perkinelmer.com/ContactUs

Copyright ©2011, PerkinElmer, Inc. All rights reserved. PerkinElmer® is a registered trademark of PerkinElmer, Inc. All other trademarks are the property of their respective owners.