## **ICP** - Mass Spectrometry

# NexION® 2000 ICP-MS



#### The following performance can be measured under a single set of optimized conditions for each mode.

#### **Detection Limits**

Based on three times the standard deviation of the blank using three-second integration time and peak hopping at 1-point per mass.

| Element           | Detection Limits<br>ng/L (ppt)         |
|-------------------|----------------------------------------|
| °Ве               | < 0.5                                  |
| <sup>56</sup> Fe  | < 1.5<br>(Reaction mode, with ammonia) |
| <sup>59</sup> Co  | < 0.5                                  |
| <sup>115</sup> In | < 0.25                                 |
| <sup>238</sup> U  | < 0.25                                 |

### Sensitivity

| Element           | Sensitivity<br>Mcps/mg/L |
|-------------------|--------------------------|
| °Be               | > 6                      |
| <sup>115</sup> ln | > 100                    |
| <sup>238</sup> U  | > 80                     |



#### **Oxide and Doubly-charged Species**

Measured under identical operating conditions used to achieve sensitivity and detection-limit specifications.

| CeO+/Ce+ | < 0.025 |
|----------|---------|
| Ce++/Ce+ | < 0.03  |

< 1 cps

#### **Background Signal**

Mass 220

#### **Short-term Precision**

Defined as the relative standard deviation (% RSD) for a 1-10 µg/L multi-element solution, automatically cycling between Standard, Reaction and Collision modes, using a 3-second integration time, without internal standardization.

< 3% RSD

#### **Long-term Stability**

Relative stability after a one-hour warm-up period. Defined as the relative standard deviation of the mean signal for a 1-10  $\mu$ g/L multi-element solution, automatically cycling between Standard, Reaction and Collision modes, measured once every 10 minutes, without internal standardization.

< 4% RSD over four hours

#### **Isotope-ratio Precision**

Defined for the isotope ratio of <sup>107</sup>Ag/<sup>109</sup>Ag. Obtained using single-point peak hopping.

< 0.08\*% RSD (\*or within a factor of two of the counting statistics limit)

#### **Mass Calibration Stability**

Measured using a 1 µg/L multi-element solution containing <sup>7</sup>Li, <sup>24</sup>Mg, <sup>115</sup>In and <sup>238</sup>U. Defined in terms of the shift in spectral position corresponding to maximum spectral peak intensity for each element, obtained without the use of multiple-point, peak-searching algorithms.

< 0.05 amu over eight hours of continuous operation

#### PerkinElmer, Inc. 940 Winter Street Waltham, MA 02451 USA P: (800) 762-4000 or (+1) 203-925-4602 www.perkinelmer.com

Quadrupole Peak Hop (Slew) Speed

Defined as the maximum rate at which the quadrupole can jump over 160 amu without affecting the precision of the analytical measurement.

1.6 M amu/sec

#### **Quadrupole Scan Speed**

Defined as the maximum rate at which the quadrupole can be scanned while acquiring continuous spectral data at every mass from the minimum to the maximum mass of the instrument (1-285 amu).

5000 amu/sec

#### **Abundance Sensitivity**

Defined as the intensity of a given isotope at spectral peak maximum, relative to the intensity of that isotope at 1 amu lower and at 1 amu higher than the mass position corresponding to peak maximum.

| Measured at | t <sup>238</sup> U                              |
|-------------|-------------------------------------------------|
| Better than | 1.0 x 10 <sup>-6</sup> at low mass side of peak |
| Better than | 1.0 x $10^{-7}$ at high mass side of peak       |

#### **Detector Linear Range**

The SimulScan<sup>M</sup> detection system operates from < 0.1 cps to > 10<sup>9</sup> cps. This provides over 10 orders of magnitude of linear dynamic range in a single continuous scan.

#### **Transient Data Acquisition Speed**

> 3000 temporal data points/sec maximum



For a complete listing of our global offices, visit www.perkinelmer.com/ContactUs

Copyright ©2017, PerkinElmer, Inc. All rights reserved. PerkinElmer® is a registered trademark of PerkinElmer, Inc. All other trademarks are the property of their respective owners.

PKI