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Sensitivity, Background, Noise and Calibration In Atomic 
Spectroscopy – Effects on Accuracy and Detection Limits 

Introduction
Proper calibration in atomic spectroscopy and an understanding 
of uncertainty is fundamental to achieving accurate results. This 
paper provides a practical discussion of the effects of noise, error 
and concentration range of calibration curves on the ability to 
determine the concentration of a given element with reasonable 
accuracy. The determination of lower limits of quantitation and 
lower limits of detection will also be discussed.

Results accuracy is highly dependent on blank contamination, 
linearity of calibration standards, curve-fitting choices and the 
range of concentrations chosen for calibration. Additional factors 
include the use of internal standards (and proper selection of 
internal standards) and instrumental settings. 

This paper is not intended to be a rigorous treatment of statistics 
in calibration; many references are available for this, such as 
“Statistics in Analytical Chemistry1".

The techniques of atomic spectroscopy have been extensively 
developed and widely accepted in laboratories engaged in a broad 
range of elemental analyses, from ultra-trace quantitation at the 
sub-ppt level, to trace metal determination in the ppb to ppm 
range, to major component analysis at percent level composition.

A fundamental part of analysis is establishing a calibration curve 
for quantitative analysis. A series of known solutions is analyzed, 
including a “blank” prepared to contain no measurable amounts 
of the elements of interest. This solution is designated as “zero“ 
concentration and, together with one or more known standards, 
comprises the calibration curve. Samples are then analyzed and 
compared to the mathematic calculation of signal vs. concentration 
established by the calibration standards. Unfortunately, preparation 
of contamination-free blanks and diluents (especially when 
analyzing for many elements), perfectly accurate standards, and 
perfect laboratory measurements are all impossible.

The three most common atomic spectroscopy techniques are 
atomic absorption spectroscopy (AA), ICP optical emission 
spectroscopy (ICP-OES) and ICP mass spectrometry (ICP-MS). 
Of these, ICP-OES and ICP-MS are very linear; that is, a plot 
of concentration vs. intensity forms a straight line over a 
wide range of concentrations (Figure 1). AA is linear over a 
much smaller range and begins to curve downward at higher 
concentrations (Figure 2). Linear ranges are well understood, 
and, for AA, a rule of thumb can be applied to estimate the 
maximum working range using a non-linear algorithm.

This paper will discuss the contributions of sensitivity, 
background, noise, calibration range, calibration mathematics 
and contamination on the ability to achieve best accuracy and 
lowest detection limits.

Figure 1

Figure 1. Example of a linear calibration curve in ICP-MS.
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graphite furnace AA, based on a more thorough and widely-
ranging definition2. However, these procedures are specific to 
water, wastewater and other environmental samples.

There are few widely accepted approaches for other matrices 
such as food, alloys, geological and plant materials, etc. It is left 
to the lab doing the analysis to establish an approach to answer 
the question “How low a concentration of a given element can 
we detect in a particular sample matrix?” Because there exists 
a long history in most labs and many different techniques are 
employed (e.g., GC, LC, UV-VIS, FT-IR, AA, ICP, and many others) 
there are many opinions and approaches to this subject. 

How, Then, Do We Establish “How Low We Can Go”?
The simplest definition of a detection limit is the lowest 
concentration that can be differentiated from a blank. The blank 
should be free of analyte, at least to the limit of the technique 
used to measure it. Assuming the blank is “clean”, what is the 
lowest concentration that can be detected above the average 
blank signal?

One way to determine this is to first calibrate the instrument 
with a blank and some standards, calculate a calibration curve, 
and then attempt to measure known solutions as samples at 
lower and lower concentrations until we reach the point that 
the reported concentration is indistinguishable from the blank. 
Unfortunately, no measurement at any concentration is perfect 
– that is, there is always an uncertainty associated with every 
measurement in a lab. This is often called “noise”, and this 
uncertainty has several components. (A detailed discussion of 
sources of uncertainty is also a lengthy discussion3 and beyond 
the scope of this document.) So, to minimize uncertainty, it is 
common to perform replicate measurements and average them.

The challenge, then, is to find the lowest concentration that can 
be distinguished from the uncertainty of the blank. This can be 
estimated by using a simple statistical approach. For example, U.S. 
EPA methods for water use such an approach. After calibration, a 
blank is run as a sample 10 times, the 10 reported concentrations 
are averaged and the standard deviation is calculated. A test for 
statistical significance is applied (the Student’s t-test) to calculate 
what the concentration would be that could be successfully 
differentiated from the blank with a high degree of confidence. In 
the U.S. EPA protocol, a 99% confidence is required. This equates 
to three times the standard deviation of 10 replicate readings. This 
is also known as a 3σ (sigma) detection limit and is designated as 
the Instrument Detection Limit (IDL) for U.S. EPA methods.

It is important to note that the statistically calculated detection 
limit is the lowest concentration that could even be detected in 
a simple, clean matrix such as 1% HNO3 – it is not repeatable or 
reliable as a reported value in a real sample.

To be more repeatable, the signal (with its associated uncertainty) 
must be significantly higher than the uncertainty of the blank, 
perhaps 5-10 times the standard deviation of the blank. This is a 
judgment by the lab as to how confident the reported value should 
be. This concentration level might be called the lowest quantitation 
limit, sometimes known as PQL (practical quantitation limit), LOQ 
(limit of quantitation) or RL (reporting limit). There are no universally 
accepted rules for determining this limit.

Detection Limits – “How Low Can We Go?”

Under ideal conditions, the detection limits of the various 
techniques range from sub part per trillion (ppt) to sub part per 
million (ppm), as shown in Figure 3. As seen in this figure, the 
best technique for an analysis will be largely dependent on the 
levels that need to measured, among other considerations.

It is important to realize that detection limits are not the same as 
reporting limits: just because a concentration can be detected does 
not mean it can be reported with confidence. There are many 
factors associated with both detection limits and reporting limits 
which distinguish each, as will be seen in the following discussion.

A discussion of detection limits can be lengthy and is subject 
to many interpretations and assumptions – there are even 
several definitions of “detection limits”. In atomic spectroscopy, 
there are some commonly accepted approaches. Under some 
analytical protocols, the determination of detection limits is 
explicitly defined in a procedure, as in U.S. EPA methods 200.7 
and 6010 for ICP, 200.8 and 6020 for ICP-MS and 200.9 for 

Figure 3

Figure 3. Detection limit ranges of the various atomic spectroscopy techniques.

Detection Limit Ranges (μg/L)

Figure 2

Figure 2. Example of a non-linear calibration curve in AA.
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Again, the EPA has guidelines in some methods for water samples 
that establish a lower reporting limit as a concentration that can 
be measured with no worse than +/- 30% accuracy in a prepared 
standard. This rule is only applicable to the specific EPA method 
and in water samples.

Many labs apply the EPA detection limit methodologies simply 
because there are few commonly accepted and carefully defined 
approaches for other sample types. Some industries follow 
ASTM, AOAC or other industry guidelines, and some of these 
procedures include lower-limit discussions.

When analyzing a solid sample, the sample must first be brought 
into solution, which necessarily involves dilution. The estimation 
of detection or quantitation limits now needs to account for the 
dilution factor and matrix effects. For example, if 1 g of sample is 
dissolved and brought to a final volume of 100 mL, the detection 
limit in the solution must be multiplied by the dilution factor 
(100x in this example) to know what level of analyte in the 
original solid sample could have been measured if it could 
have been analyzed directly.

To use the statistical estimate technique (3σ detection limit), a 
“clean” matrix sample must be available, but this is not always 
possible. The very product or incoming material being evaluated 
may be the best example available, but it may be contaminated 
with the element being determined – indeed, this is the purpose 
of the analysis. Finding a true “blank” is difficult.

In many cases, then, a more empirical or practical approach is 
taken. After preparing the sample, it is spiked with a known 
amount of analyte and measured. If the spike recovery is 
accurate within some acceptable limits (this is also subject 
to many opinions and there is no “rule” about what is 
acceptable accuracy, although the EPA has a rule for spike 
recovery when analyzing environmental samples), then a lower 
concentration spike is attempted. After a series of lower and 
lower concentration spikes, there will be a point at which 
“confidence” is lost. The analyst would then set a limit for 
reporting that is at or above a level that gives reasonable 
accuracy. This is a gray area and is up to the lab to decide. 
Again, a multiplier for dilution factor must be incorporated into 
this reporting limit if the sample has been diluted for analysis.

What factors are important for achieving the best possible 
detection limits? They are:

1.	Signal “strength” or sensitivity

2.	Background

3.	Noise

4.	Stability

	 Let’s examine each of these.

Sensitivity Plays a Role in Detection Limits
Signal strength (intensity) must be sufficient to differentiate 
the presence of an element above the background AND noise; 
this is known as “sensitivity” and is an important characteristic. 
However, sensitivity is not, by itself, sufficient to predict detection 

limits. For example, if contamination is present, a 10-fold increase 
in signal will also increase the background 10-fold. In an ideal 
situation (i.e. the absence of high background or excessive noise) 
detection limits theoretically improve by the square root of the 
increase in signal intensity (i.e. a 9x increase in intensity will improve 
detection limits 3x). However, as we will see, background level and 
noise have as much of a contribution to detection limits as intensity.

In ICP-OES and ICP-MS, a common way to express intensity 
is “counts per second”, or cps. We will use this unit in the 
following discussion. 

Background Signal Plays an Important Role in 
Detection Limits.
Consider an example with a signal that gives an easily measurable 
intensity of 1000 cps. However, if the background is 10,000 cps 
the signal is small relative to the background. It is common to 
express the relationship between signal and background as the 
“signal-to-background ratio” or S/B. (This is often referred to as 
“signal-to-noise” or S/N, but background and noise are two distinct 
characteristics). The above example would have an S/B of 0.1. 
However, if the background were only 1 cps, the same 1000 cps 
signal would have a S/B of 1000, or 10,000 times better than the 
first example. These two examples are illustrated in Figure 4, which 
shows that a smaller signal, say 100 cps, is easier to distinguish 
from a background of 1 cps than a background of 10,000 cps. 

All signals are measured in the presence of some degree of 
background, which can originate from a variety of sources, 
including detector and electronic characteristics, emitted light 
from the excitation source (prevalent in ICP-OES), interfering ions 
formed in the source or from the matrix (prevalent in ICP-MS), 
or contamination. A quantitative measure of background level 
is called the “Background Equivalent Concentration”, or BEC, 
which is defined as the concentration of a given element that 
exhibits the same intensity as the background, measured at a 
given wavelength (ICP-OES) or mass (ICP-MS). BEC is calculated 
with the following formula:

BEC =	  * Cstandard

Iblank = Intensity of the blank

Istandard = Intensity of the standard

Cstandard = Concentration of the standard

The units of the BEC are the same as the units of the standard.

To illustrate, consider an example of two elements, A and D. 
Suppose Element A has a sensitivity of 1000 cps/ppb, and element 
D has a sensitivity of 10,000 cps/ppb. We would say that D has 
10 times more sensitivity than A. However, if the mass of D is the 
same as a common background species produced in the argon 
plasma (such as ArO+), the background signal would be high 
(100,000 cps for ArO+ in this example). If Element A has no 
interfering background species, the background could be  
1 cps, due only to electronic effects.

Iblank

Istandard - Iblank
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Even though element D is 10x more sensitive, the ability to detect D 
is worse than A, as shown in Figure 4. The BEC for A is 0.001 ppb 
while the BEC for D is 10 ppb. Note that BEC is NOT a detection 
limit, but an indicator of relative size of the signal from the element 
and background. The lower the BEC, the lower the detection limit.

Figure 4

Element A Element D

Figure 4. Graphical representation demonstrating that a constant analyte signal 
(stripes) is more easily seen with a lower background signal (green).

Figure 5
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Figure 5. Relationship of BEC and DL on lead (Pb). Signal from Pb is in orange; the 
signal from the background is blue.

Sample Medium Sensitivity High Sensitivity

Blank (cps) 78 701

Standard (cps) 81000 809000

BEC (ppt) 1.0 0.9

DL (ppt) 0.38 0.42

Table 2. Lead at Medium and High Sensitivities.

Another case is an element that normally has no background 
contribution above the instrument background of 1 cps –  
lead (Pb). In the example in Figure 5, the Pb background is  
100 cps, due to Pb contamination. As a result, the Pb BEC  
and detection limits both increase, compared to an analysis 
with no Pb contamination. 

At medium sensitivity, a Ho blank gives 0.2 cps, and a 1 ppb 
standard gives 121,000 cps, which yields a BEC and detection 
limit of 0.002 ppt. With a 10x higher signal (1,270,000 cps) but 
no increase in blank, the BEC and detection limit improve to 
0.0002 ppt and 0.0007 ppt, respectively.

Now consider the same situation for Pb, as shown in Table 2.

In this example, there is Pb contamination in blank, so when 
sensitivity increases 10x, the signals in both the blank and 
standard increase 10x, meaning the S/B remains constant. As 
a result, there is no improvement in BEC or DL, despite the 
increase in sensitivity. Since most elements measured by ICP-
MS have some interference or contamination on their masses, 
higher sensitivity does not always improve BEC or DLs.

Noise Plays an Important Role in Detection Limits.
In the example above, the inherent assumption is that the 
signal and the background are perfect measurements; that 
is, 1000 cps has no variability, and the background has no 
variability. However, this is never the case in a real laboratory 
measurement: all measurements have uncertainty, which is 
referred to as “noise”. For example, if a signal of 1000 cps was 
measured five times, it would vary - 995, 1028, 992, 1036, 
987 cps. This is why replicate readings are measured: because 
they are never perfect, we want to measure multiple times and 
take the average. In the above example, an average of the five 
readings (1008 cps) would be reported. How much variability 
there is among the replicates would be indicated by using the 
Standard Deviation (for absolute variation) and/or the Relative 
Standard Deviation (for a percentage). So, the reported value in 
cps would be:

1008 +/- 20 cps (using the standard deviation)

or

1008 +/- 2% (using the relative standard deviation)

Now superimpose “noise” or “uncertainty” on an example, 
assuming a signal of 1000 cps and a background of 10000 cps: 

•	 If the signal of 1000 cps had an uncertainty of +/- 2%, then 
the signal could be 980 – 1020 cps.

•	 If the background also had an uncertainty of 2%, then its 
range could be 9800-10200 cps. 

Sample Medium Sensitivity High Sensitivity

Blank (cps) 0.2 0.2

Standard (cps) 121000 1270000

BEC (ppt) 0.002 0.0002

DL (ppt) 0.002 0.0007

Table 1. Holmium at Medium and High Sensitivities.

Now consider the effect of increased sensitivity on BEC and 
detection limit for Pb and holmium (Ho). While Pb is a very 
common element, Ho is not. As a result, Pb contamination is 
common, while Ho contamination is rare. If there is no interference 
or contamination on an analyte mass, a 10x increase in sensitivity 
improves the DL by a factor of 3 (the square root of the increase). 
In Table 1, Ho has two different sensitivities. 



5

Figure 6

Figure 6. Effect of background and noise on a small signal.

Figure 6 shows an illustration of a small signal on top of 
background + noise.

On the left, a small analyte signal (blue) is “buried” in the 
natural uncertainty of the high background and is difficult  
to see. In addition, the analyte signal has its own uncertainty. 
If the background is high relative to the analyte signal, the 
ability to quantitate (or even detect) is compromised. On the 
right, the same analyte signal is easily differentiated from a 
low background. At very low concentrations near detection 
limits, longer integration times are necessary to average the 
noise of both signals.

Stability is Important For Reliable Detection Limits
Stability plays a large role in detection limits in that small signals 
must be very steady to give valid noise averaging. The detection 
limit is the smallest signal that, on average, can be distinguished 
from the average noise of the blank, as shown in Figure 6. It is 
important to note that the noise and stability are as important 
as the absolute signal size in being able to differentiate a “real” 
signal from the noise of the blank. 

Furthermore, if an analytical sequence lasts for many minutes 
or hours, the baseline must be stable for small signals to be 
measured as accurately as statistical variation allows. Figure 7 
shows a blank analyzed repeatedly (after calibration, results 
in concentration units of mg/L). The variation would be called 
“noise”. Following the EPA protocol for estimating detection 
limit, the first 10 readings were averaged and the Standard 
Deviation calculated, giving a value of 0.0086 mg/L; three 
times the standard deviation (99% confidence level, Student-t 
test) equals 0.025 mg/L. The red line in Figure 7 shows this 3σ 
detection limit for this analysis.

However, if the analytical conditions are not stable over the time 
frame of the sample run (i.e. batch of samples), the reported 
results can be well below the calculated detection limit. Figure 8 
shows the effect of drift: towards the end of the run, reported 
concentrations for a blank sample are as low as -0.05 mg/L. 
Therefore, a sample with as much as 0.075 mg/L would report 
as “below detection limit” of 0.025 mg/L.

Figure 7
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Figure 7. Concentration measurements of a blank (blue line) and associated detection 
limit (red line), determined as three times the standard deviation of the blank.

Figure 8
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Figure 8. The reported concentration of a blank sample (blue line) decreases over 
time due to instrument drift. During the final reading, the sample reads 0.075 mg/L 
below the detection limit (red line).

Calibration - Effects on Accuracy and Detection Limits

All quantitative answers reported for a sample are calculated 
from the calibration curve. Proper calibration is crucial for 
accurate results AND ESPECIALLY for low-level results near 
detection limits. 

A characteristic of atomic spectroscopy instrumentation 
is linearity: ICP-OES has a linear range of 5-6 orders of 
magnitude, while the linear range of ICP-MS is 10-11 orders 
of magnitude. Statistically, these are accurate statements. 
However, consider a series of calibration standards from  
1 ppt to 1000 ppm (a range of 109 or nine orders of 
magnitude) analyzed by ICP-MS. The resulting calibration  
curve would be linear, giving a correlation coefficient (R2) of 
0.9999 or better (a perfect fit would have a correlation of 
1.000000). A common misunderstanding of this statistic is  
that any concentration from 1 ppt to 1000 ppm could then  
be read accurately because the curve is “linear”.
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Figure 9

y = 1538x + 0
R2 = 0.999905

Figure 9. Calibration curve for 11 standards from 10 ppt to 1,000 ppb (six orders of magnitude) with an R2=0.999905.

Concentration 
(ppb)

Mean  
Intensity  

(cps)

Error of  
1% (cps)

Mean  
Intensity with  
1% Error (cps)

0 0 0 0

0.1 100 + 1 99 - 101

1 800 + 8 792 – 808

10 11000 + 110 10890 - 11100

50 46000 + 460 45540 - 46460

100 95000 + 950 94050 -95950

Table 3. Hypothetical calibration with some preparation errors.

Figure 9 shows an excellent linear relationship over six orders of 
magnitude (R2= 0.999905). Later we will see there is a hidden 
problem with this apparently excellent linear calibration, but 
first some understanding of how real data operates is in order.

The only way perfect accuracy across such wide ranges can 
be achieved is if every measurement is perfect – which is not 
possible. Every standard on the curve has an associated error. In 
fact, the calculation of “best fit” of the calibration data points 
is a process (Linear Least-Squares fitting) of minimizing the sum 
of the squares of all the ABSOLUTE errors of the series of data 
points on the curve, as shown in the example in Table 3.

To find the “best fit” straight line, the higher standards become 
far more important than the lower standards, which causes 
linear curves (even with R2= 0.99999) to be inaccurate at the 
low end of a wide range of calibration concentrations, as shown 
in Figure 10.

Notice how the “Best Fit” line in the graph in Figure 10 is almost 
at the center of the error bar of the highest standard, while the 
lower standards are increasingly “off the line” toward the low 
end. This is the effect of the highest absolute error contributing 
the most to the overall fit.

This statistical reality affects BOTH accuracy at low levels and 
detection limits. Therefore, if accuracy at concentrations near 
the lower limits of detection is the most important criteria, a 
calibration curve that does not include very high standards is 
preferable. For example, if Se is to be determined and most 
samples will be below 10 ppb with a need to report down to 
0.1 ppb, the instrument should be calibrated with standards in this 
range. A blank (0) and three standards at 0.5, 2.0 and 10.0 ppb 
will give far better accuracy at the 0.1 ppb level than a calibration 
curve with standards of 0.1, 10.0 and 100 ppb. If even a higher 
standard (say 500 ppb) were included, the ability to read 0.1 ppb 
accurately would be nearly impossible.

Figure 10
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R² = 0.9994
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Figure 10. Effect of error on calibration curve with standards covering a wide concentration range.
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Figure 11

 

y = 1538x + 0
R2 = 0.999905

Figure 11. Calibration curve for Zn showing excellent linear statistics, but poor low-level performance.

Using a real example to further illustrate, Figure 11 shows a 
calibration curve for Zn by ICP-MS (this is the same curve as 
in Figure 9). With standards at 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 
50, 100, 500 and 1000 ppb, the correlation coefficient (R2) of 
0.999905 indicates an excellent calibration. However, when a 
0.100 ppb prepared standard is analyzed as a sample against 
this curve, it reads 4.002 ppb. How can this be?

An expanded view of the low end of the curve reveals the problem: 
contamination on the lowest seven standards, a common problem 
with zinc. However, this issue is not apparent from the excellent 
linear statistics of the complete curve. The lower standards 
contribute almost nothing statistically to the Least-Squares fit 
compared to the four highest standards.

The previous example shows the effect of contamination on 
low-level standards, but blank contamination is another common 
problem that will compromise accuracy. The calibration blank is 
assumed to be zero concentration. The measured signal of the 
blank is subtracted from all subsequent measurements (standards 

and samples). If the blank signal intensity is higher than that of a 
sample, then the net blank-subtracted sample signal will calculate 
to a negative concentration value, as illustrated in the following 
ICP-OES example. 

An analysis of pure aluminum is performed, looking for silicon as 
an analyte. After calibration, the sample (1000 ppm Al) shows 
a silicon concentration of -0.210 mg/L. There could be several 
reasons for this: improper background correction, an interference 
from a nearby peak, internal standard response. However, as 
shown in Figure 12, the problem is a poor calibration curve, as 
shown in Figure 12a. The cause: a contaminated blank, which can 
clearly be seen in Figure 12b. In this figure, the blank spectrum 
for Si (yellow) has a peak that is higher than the sample (blue 
spectrum). As a result, the sample will be reported as negative. 
Additionally, since the blank is also subtracted from the calibration 
standards, the calibration plot is not linear. Clearly Si is present in 
the sample (blue spectrum), but calculating the concentration with 
a blank that is contaminated with Si is not possible.
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Figure 12. Effect of blank contamination. (A) Si calibration curve with a poor correlation coefficient due to the low standard not falling on the curve. (B) Si spectra of the blank 
(yellow) and calibration standards (red), and sample (blue). The presence of Si in blank affects the calibration curve and causes the sample to read negative.
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Weighted Linear
Another approach would be to make the lowest standards carry 
the greatest weight in the linear statistical fit. This is known as 
“weighted linear” or “inversely weighted linear”. Instead of 
calculating the least squared sum of errors using the absolute 
errors of the standards, this approach calculates the linear fit 
from the least squared sum of 1/error of each standard (1/x2). 
The highest standards now contribute the least to the overall fit.

The advantage to this approach is that the low end of the 
curve “fits” better than the high end, improving accuracy at 
the low end. However, accuracy at the high end can suffer.

Using the example from Figure 13, but applying a weighted linear 
fit to the data, the R2 improved slightly to 0.9999 and low-end 
accuracy is much improved, as shown in Figure 14. A 5 ppb 
sample calculates as 5.01 ppb and a 10 ppb sample reads as 
9.97 ppb. At the high end, a 100 ppb reads 101.1 ppb.

Figure 13

y = 6932x + 0
R2 = 0.999716

Figure 13. Linear through zero calibration curve showing the influence of high concentration standards on low concentrations.

Figure 14

y = 6696x + 14866
R2 = 0.999946

Figure 14. The same calibration curve as in Figure 13, but using a weighted linear fit, which places more emphasis on the low-level standards. 

To make matters worse in this example, the pure solid aluminum 
was dissolved and diluted a factor of 1000 to give a final solution 
of 1000 mg/L. The reported answer of -0.210 would be multiplied 
by the dilution factor (1000x) to give a final Si “concentration”  
of -210 mg/L!

Clean blanks and diluents are essential for good accuracy AND 
detection limits.

Different Calibration Mathematics – Effect on Accuracy

Linear Through Zero
The previous discussions and examples all used “linear through 
zero” calibrations (i.e. the regression curve is forced through 
the origin) and have shown that the highest standards carry 
the greatest influence. In Figure 13, the two lowest standards do 
not fit the linear-through zero best fit line very well, although the 
R2 is a quite acceptable 0.9997. The analytical problem is that a  
5 ppb sample would calculate as about 7 ppb (a 40% error), and 
a 10 ppb sample would calculate as about 11.7 ppb (17% error).
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Figure 15

y = 6761x + 13097
R2 = 0.999947

Figure 15. The same calibration curve as in Figure 13, but using a simple linear fit, where the origin is included as a data point in the regression calculation, but the 
curve does not have to pass through the origin.

Figure 16

Figure 16. Copper calibration curve by flame AA up to 20 mg/L using a non-linear 
algorithm, 4x higher than the linear range. 

Analyte 	 Cu 324.75
Slope	 0.17424
Intercept	 0.00000
Correlation Coefficient	 1.000000

However, if there is contamination in the low standards, the 
effect/error is magnified and can render a weighted linear 
curve unfit for any practical purpose.

Simple Linear (Linear With Calculated Intercept)
A popular approach to curve fitting is “simple linear” or “linear 
with calculated intercept”. In this approach, the blank is just 
another point on the curve and is included in the overall fit – the 
curve does not have to pass through the origin as with “linear 
through zero”.

Again using the same data as the previous examples, Figure 15 
shows a simple linear fit gives R2 of 0.9999. A 5 ppb sample 
would calculate as 5.22 ppb, a 10 ppb sample would calculate as 
10.13 ppb, and a 100 ppb sample would calculate as 100.3 ppb.

There are no hard rules about which algorithm to use unless 
one is required in a particular prescribed method. A practical 
approach is to use the curve fitting algorithm that gives best 
accuracy on known check samples, especially near the low end 
of the calibration range.

Non-linear Through Zero
Calibration response in ICP-MS should be linear over a wide 
range of concentrations. If non-linearity is observed, an 
incorrect setup should be suspected. Variables include:

a.	Improper standards preparation 

b.	Standards that extend above the bottom range of the 
detector, and detector calibration factors that are not accurate

c.	An unrecognized interference that is not properly 
subtracted or eliminated

Calibration response in ICP-OES is also very linear, but can become 
non-linear due to a phenomenon known as self-absorption at 
high concentrations. If the concentration range is too broad to be 
linear, alternate wavelengths should be considered that will give a 
linear response over the range of anticipated concentrations. Using 
a modern ICP optical emission spectrometer with a solid-state 
detector (i.e. having many alternative wavelengths) should eliminate 
the need for non-linear calibrations.

Calibration response in AA is linear only over two to three orders 
of magnitude, and many labs need to calibrate over a wider range 
to encompass the samples of interest. This is where non-linear 
calibration can be useful. The curvature of AA is well understood, 
and an accurate, non-linear algorithm was published in 19844 that 
allows calibration up to 6X of the linear response (Figure 16).

Method of Standard Additions

The Method of Standard Additions (MSA) is treated separately 
from the other algorithms as it differs in a significant aspect: MSA 
creates the calibration curve in the sample itself by adding known 
concentrations of analyte. All other calibrations in the previous 
discussions were created from a series of known solutions in a 
clean, simple matrix known as “external standards”. 
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In some sample types, the sample “behaves” differently from the 
external standards due to a variety of factors, including viscosity, acid 
content and/or dissolved solids, among others. The outcome: biased 
results due to a different “sample transport efficiency” between 
the calibration standards and the samples. The technique of adding 
internal standards to the blank, standards and samples and using 
the change in response of the internal standard to correct for these 
physical effects is a popular way to adjust reported concentrations 
in samples. Additionally, it is desirable to “matrix match” the blank 
and standards to the samples to minimize this effect. If samples are 
digested in a 2% HNO3 / 1% HCl mixture, preparing a calibration 
blank and standards in the same acid mix will minimize sample 
transport differences. An internal standard is still recommended to 
monitor and correct for any residual effects. 

However, in some cases the matrix effects are severe and achieving 
an accurate result is difficult. Using MSA allows a “perfect match” 
of the standard response to that of the sample because the 
calibration slope is calculated in the sample matrix itself.

As an example, consider a maple syrup sample with an unknown 
amount of aluminum contamination. To analyze for aluminum, 
external standards prepared in the typical 1% nitric acid diluent 
will not give an accurate comparison because maple syrup is much 
more viscous that even a dilution will need an internal standard to 
correct for the sample transport difference.

A more accurate way to quantitate aluminum in this case is to add 
known amounts of aluminum to the sample (“spikes” of increasing 
concentration) and analyze the unspiked sample with the spiked 
aliquots. A moderate dilution would also be appropriate to reduce 
the severe viscosity, but to preserve sensitivity and detection limits, 
perhaps a 1:10 dilution. A calibration curve is created from these 
solutions using Graphite Furnace AA, as shown in Figure 17.

In this calibration technique, “zero” concentration is the unspiked 
sample with Al present (a positive signal), but its concentration is 
unknown. It could be thought of as “Zero ADDED Al”. The spiked 
sample containing the unknown amount plus an added 1 ppb is 
“1” on the calibration scale, and the unknown amount plus an 
added 2 ppb is “2” on the calibration scale.

Figure 17

Figure 17. Method of Standard Additions (MSA) calibration curve for Al in 
maple syrup using AA.

A linear regression is calculated and extrapolated back to the 
concentration axis. The absolute value of the numeric intercept 
(Figure 17, -0.82 ppb) is the value of the unknown (0.82 ppb).

The advantage of MSA is that any matrix effects affect both the 
original sample and the spiked additions in the same way, and 
good accuracy in difficult matrices is more achievable.

The disadvantage of MSA is the need to prepare multiple aliquots 
of the same sample and make three or four measurements to get 
one answer.

A modification of the MSA technique can be used if several or 
many samples of the exact same matrix are to be analyzed, such as 
the analysis of urine. One sample can be spiked with the additions, 
the calibration curve created and the remaining samples just 
analyzed as unknowns against the calibration. This is often known 
as “Method of Additions Calibration”. The overhead of multiple 
preparations is therefore limited to one sample.

Effects of Calibration Approaches on Detection Limits

In the Detection Limit section above, the effects of sensitivity, 
noise, background and stability were discussed. Another important 
parameter is the effect of calibration on detection limits.

If a calibration curve is poorly fit at the low end, nonsensical values 
for detection limit calculations can result. In the example from 
Figure 11, a low level sample of 0.1 ppb calculates to 4.002 ppb. 
Even though the calculated detection limit based on 3σ of the 
noise of the blank might be 0.05 ppb, the ability to actually read 
anything near that level is impossible if contamination or poor 
curve fitting are present. Sometimes a very low standard will even 
calculate to a negative value, which also makes the estimated 
detection limit worthless.

It can be stated that detection limits are dependent on valid 
calibration, in addition to sensitivity, noise, background and stability.

Summary

Achieving accurate results and getting the lowest possible detection 
limits are dependent on careful attention to many details. Proper 
preparation of solutions, avoidance of contamination, selection of 
optimum calibration ranges for the application and proper selection 
of calibration scheme are all critical. 

Not addressed in this discussion, but of crucial importance, is 
proper maintenance of sample introduction components and 
optimization of the instrument. These aspects are the foundation  
of accurate, precise measurements. Sample collection 
and preparation are, of course, the gateway to the actual 
measurements in the lab. If contamination or analyte loss are not 
controlled at the point of sampling and preparation, all subsequent 
activities are compromised.

It is said that “the devil is in the details”; this can be a good guiding 
principle for this discussion. Every variable is important and every 
detail has an impact on the total quality of data.
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