
Introduction

Most phenomena measured by thermal analysis result in a heat-flow effect 
which is large compared to the noise on a differential scanning calorimetry 
(DSC) baseline. However, there are applications where high sensitivity is called 
for, such as when measuring low-concentration components, for example additives 
or low-concentration phase components. For such applications, it is sometimes 
useful to use a special signal-processing treatment, like wavelet analysis, to 
reduce random signal noise. With such an approach, the signal is analyzed in the 
time domain to identify the periodicity of the components which together add 
up to the total heat-flow signal.  When this is done using a statistical process, the 
components that are purely random can be removed and the signal reconstituted  
as the normal DSC output. This is a superior approach than merely averaging 
over a specific time period – or even over an adjustable time period – because  
it does not result in shifting the data, reducing the resolution of adjacent events 
or changing the area of peaks.
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The new Wavelet Analysis algorithm from PerkinElmer was 
also applied to the same data set, as can be seen in Figure 2.  
The curve fits the raw data with no loss of resolution. 
Moreover, a calculation of the total peak area and the  
partial peak areas (not shown) are the same within 0.02%.  
Clearly, this is a smoothing algorithm we can live with.

How Wavelet Analysis Works

In contrast to averaging, wavelet analysis uses a statistical 
analysis of the data to distinguish signal from noise. It relies 
on the fact that despite its random origins, the long-term 
average character of noise is usually fairly reproducible.  
Signal, on the other hand, is often quite sparse. There may 
well be long segments of data with only slowly varying 
baseline activity (and noise, of course) but only occasional 
genuine signal. Not only the time character of the signal 
may be different from the noise – its frequency composition 
will almost certainly be different. To the eye, this appears as 
a difference in the character of the shape: signal simply does 
not look like noise.

Wavelet denoising seeks to break down the combination of 
signal and noise into its constituent parts as a function of 
both period (width) and time. The result is a series of time 
curves characterizing increasingly broader aspects of the 
original data. A statistical analysis of the time curves then 
determines the level of the noise components at each width 
and then de-weights those parts that are clearly noise. The 
power of wavelet analysis is that the signal can then be 
reconstructed from the component time curves but minus 
the noise that was suppressed. The result is effective noise 
suppression with much less potential for distortion of the 
signal.

Why Not Conventional Smoothing?

Conventional filtering of data to reduce noise works typically 
by averaging the data. A simple example of such a filter is 
a running average such as can be found in the trendline 
options of Microsoft®’s Excel®. A block of data points is averaged 
and the block is moved forward one point at a time to produce  
filtered data points. This filter averages out the rapidly 
varying noise, leaving the slowly varying signal relatively 
unchanged. The length of the filter block determines the 
heaviness of the smooth, so noise components with a period 
less than the block will be suppressed, and the longer the 
average, the more noise is eliminated. More sophisticated 
forms of averaging are also used, but the underlying principle 
is the same.

The problem with this type of filter is that it can only distin-
guish between signal and noise based on their relative rates 
of variation. Provided that signal features are broad and 
noise features are relatively narrow, the filtering can be very 
effective. However, if the noise and the signal have similar 
widths, then both will be affected more or less equally by 
the filtering. Signal is lost and this is observed by the user 
as a broadening and reduction of features, leading to loss 
of both qualitative and quantitative information. This can be 
particularly problematic for sharp peaks and transitions in 
thermal-analysis data, where the user may wish to separate 
closely-spaced events or determine peak parameters rather 
carefully.

Figure 1 shows data obtained on a PerkinElmer® DSC 8000 
from an analysis of a 0.93-mg sample of 98% pure hexatria-
contane, a saturated aliphatic hydrocarbon having a formula 
– C36, H74 – that exhibits a solid-solid transition just below 
the melt.  The circles indicate the actual raw heat-flow  
data points, and the solid line indicates the smoothed data 
produced by applying a 10 data-point rolling average with  
a window width of 0.4 ˚C.  Even with this seemingly minimal 
smoothing, there is a clear loss of resolution, as indicated by 
the reduced peak height and filled-in valley between the peaks.

Figure 2.  DSC scan of the hexatriacontane melt showing raw data points and 
wavelet analysis.

Figure 1.  DSC scan of the hexatriacontane melt showing raw data points and 
conventional smoothing.



For a complete listing of our global offices, visit www.perkinelmer.com/ContactUs

Copyright ©2010, PerkinElmer, Inc. All rights reserved. PerkinElmer® is a registered trademark of PerkinElmer, Inc. All other trademarks are the property of their respective owners.
 
009112_01

PerkinElmer, Inc. 
940 Winter Street 
Waltham, MA 02451 USA	
P: (800) 762-4000 or 
(+1) 203-925-4602
www.perkinelmer.com

Wavelet Analysis Most Useful for Weak Peaks

One drawback for using wavelet analysis is that random 
noise is sufficiently low that it rarely limits the interpretation of 
the data. On the other hand, there are sources of noise that 
are not random and which become more obvious once the 
random sources are eliminated. Examples of these include: 
sample motion, pan motion, lid motion, convection effects, 
imperfect cooler control, and Cp effects due to small variations 
in the heating rate as experienced by the sample. Trying to 
interpret small bumps at this level is rarely useful.

An example of a small peak that can benefit from noise 
reduction can also be seen in the same hexatriacontane 
analysis at a temperature just below the major peaks.  
This peak may be due to an impurity or a small amount 
of material in a different crystalline phase. Figure 3 shows 
the same DSC analysis presented on a time scale with two 
regions blown up to better see the reduction in the scatter 
of the raw data. 

Conclusion

In summary, smoothing data always carries the risk of losing 
information or distorting peak shape. However, when using 
the PerkinElmer DSC 8000 or DSC 8500, wavelet analysis is 
able to preserve peak shape while reducing random noise.

Figure 3.  DSC scan of the hexatriacontane melt vs. time with expanded 
windows to show the fit of the wavelet data in the initial isotherm and in the 
region of the melting of an impurity. 


