APPLICATION NOTE

UV/Visible Spectroscopy

Color Analysis on the LAMBDA PDA UV/ Visible Spectrophotometers

Introduction

Using the Color Analysis mode of the UV Lab™ software, CIE L*,a*,b* values of liquid or solid color samples

can be obtained. It is very useful in the quality control process of the dye or beverage industry because it is easy to compare product color to color standards.

L*, a* ,b* color space(CIELAB) is the most general color space for measuring color within industry. L* indicates the lightness and it may have values between 0 and 100. a* and b* may have values between around –80 and +80. Colors with no chroma always have the value a*=b*=0. Because the opponent color theory is used to develop the transformation, one of coordinates(a*) shows the redness or the greenness of color and the other coordinate(b*) shows the yellowness or the blueness. The greenness and blueness are given with negative sign whereas redness and yellowness are given with positive sign.

L*, a*, b* color space and color differences that result form this color space are described with the following equations.

 $\Delta E^*{}_{ab} = [(\Delta L^*)^2 + (\Delta a^*)^2 + (\Delta b^*)^2]^{1/2}$

$$\Delta E^*_{ab} = [(\Delta L^*)^2 + (\Delta C^*_{ab})^2 + (\Delta H^*_{ab})^2]^{1/2}$$

Where, $L^* = Lightness$

a*, b* = chroma coordinates

$$\Delta C^*_{ab}$$
 = chroma

$$\Delta H_{ab}^* = chroma$$

$$L^* = 116 \left(\frac{Y}{Y_n}\right)^{1/2} - 16$$
$$a^* = 500 \left[\left(\frac{X}{X_n}\right)^{1/3} - \left(\frac{Y}{Y_n}\right)^{1/3} \right]$$
$$b^* = 200 \left[\left(\frac{Y}{Y_n}\right)^{1/3} - \left(\frac{Z}{Z_n}\right)^{1/3} \right]$$

Where, $\frac{Z}{Z_n} > 0.008856$ $\frac{X}{X_n} > 0.008856$ $\frac{Y}{Y_n} > 0.008856$ **Reagents and Apparatus**

- 1. LAMBDA[™] 265/465 UV-Vis Spectrophotometer
- 2. Film Cell Holder
- 3. UV Lab software Color Analysis Mode
- 4. Color Filter Samples

Procedure

- 1. Open Color Analysis Mode.
- 2. Set parameters and click OK.
- 3. Measure Blank.
- 4. Measure Standard.
- 5. Measure Samples.
- 6. Compare CIE color coordination.

Instrument Parameters

Parameter Sett	OK								
Instrument Setup)		×						
Scan No.	10								
Integration No.	1								
Data Type	%Т		•						
Color Measurement Setup *									
Illuminant	D65		•						
Observer Angle	2 De	g	•						

Figure 1. Parameter Setting of Color Analysis Mode.

Figure 2. Transmittance spectrum of color filters.

The < Result Analysis Value> on the left side of Figure 3 shows the difference of color values between standard and sample and the <Result Colors> shows their colors.

<result analysis="" values=""></result>								<result colors=""></result>			
Sample	dE∗	dL+	da*	db+	dC+	dH*	L+	a*	b*		
SkyBlue Carbana Blue Mikkel Blue	None 37.5163 55.1397	None -10.59 -17.1813	None 33.4914 48.3416	None -13.1777 -20.2059		None 19.4641 24.5685	42.5449 31.9549 25.3636	12.0727 45.5641 60.4143	-66,5604 -79,7381 -86,7663	Standard	
Colour Wash I Durham Daylig	19.6373	9.7823 -6.5926	-4.7071 -11.9404	16.3638	-16.9123 -58.23		52,3272 35,9523	7.3656 0.1323	-50.1966 -9.4155		
Berry Blue Old Steel Blue	27.0417 62.654	-11.7009 37.062	23.2242 -27.7214	-7.4149 42.231	14.3183 -38.7189	15.2274 -223.0297	30.844 79.6069	35.2969 -15.6487	-73.9753 -24.3294		
J.winter blue	32,4328 32,6388 47,5838	-21.6154 2.3139 -31.2792	-3.3165 35.1318	2.9828 32.3873 7.1821	5.4494 -32.3693 8.209	28.2034	20.9295 44.8588 11.2657	36.0678 8.7562 47.2045	-63.5776 -34.1731 -59.3783	Sample	
Moonlight blue	39,6692	9.3355	-35,8266	14.2459	-10.1916	-214.7014	51.8804	-23,7539	-52.3145		

Figure 3. CIE system coordination values and difference values of color filters and Result Colors.

Conclusion

Using the LAMBDA 265/465 and UV Lab software the color difference values of color samples were calculated. Rapid acquirement of spectra and good sensitivity were obtained using the LAMBDA instrument. The Color Analysis Mode of the UV Lab software was used effectively for this test and to process the data efficiently.

PerkinElmer, Inc. 940 Winter Street Waltham, MA 02451 USA P: (800) 762-4000 or (+1) 203-925-4602 www.perkinelmer.com

For a complete listing of our global offices, visit www.perkinelmer.com/ContactUs

Copyright ©2015, PerkinElmer, Inc. All rights reserved. PerkinElmer® is a registered trademark of PerkinElmer, Inc. All other trademarks are the property of their respective owners.

PKI