

## APPLICATION NOTE

# Liquid Chromatography, Mass Spectrometry

Authors: Jingcun Wu Josh Ye Erasmus Cudjoe Feng Qin Shixin Sun

PerkinElmer, Inc. Woodbridge, Ontario, Canada

# Analysis of Multi-Residue Pesticides in Rice by LC/MS/MS

### Introduction

Rice is one of the most commonly consumed foods in the world. A

variety of pesticides have been used in rice production to control pests, weeds and diseases to increase crop yield. Pesticides applied in rice crops are often country/region specific due to the differences in legislation, weather and production system. Pesticide residue in rice not only affects the quality of the rice, but also threatens the health of general consumers. To prevent health risks, it is important to monitor the presence of pesticides and regulate their levels in rice. Several countries including the United States, China, Brazil, India, Japan and European Union (EU) have established maximum residue levels (MRLs) of pesticides for food and feed including rice.<sup>1-3</sup> The EU MRLs for pesticide residues in rice mostly range from 10 µg/kg to 8000 µg/kg depending on the pesticide.<sup>1</sup> To determine low levels of pesticides in rice, highly sensitive, selective and accurate analytical methods are needed. Due to the large number of pesticides potentially used in rice production, the use of multi-residue methods capable of determining many pesticides in one single run is the most efficient approach. Traditionally, pesticide residues were analyzed mainly by gas chromatography/mass spectrometry (GC/MS) methods,<sup>4,5</sup> but GC is not a suitable technique for ionic and polar compounds, especially for compounds that are thermally labile in the GC injection port. Liquid chromatography tandem mass spectrometry (LC/MS/MS) has become the method of choice for pesticide analysis due to its high selectivity and sensitivity as well as its suitability for a wide range of compounds in various sample matrices.<sup>6-10</sup>



QuEChERS extraction method has been widely applied for analysis of multi-residue analytes in food samples including rice.<sup>4,8,9,10</sup> In this study, a fast, sensitive and selective multiresidue method has been developed for analysis of over 200 pesticides in rice samples by coupling a modified QuEChERS extraction method with LC/MS/MS. Using time-managed-MRM<sup>™</sup> in the QSight<sup>®</sup> triple quadrupole mass spectrometer, the optimum dwell time of multiple MRM transitions can be generated automatically for the targeted analytes. This not only saves time in method development but also improves data quality and analytical performance, as demonstrated in this study by the results of multi- residue pesticide analysis in rice samples.

#### **Experimental**

#### Hardware/Software

Chromatographic separation of pesticides was conducted by a PerkinElmer UHPLC System and analyte determination was achieved using a PerkinElmer QSight 220 triple quadrupole mass detector with a dual ionization source. All instrument control, data acquisition and data processing was performed using Simplicity 3Q<sup>™</sup> software.

#### Method

#### Sample Preparation

Pesticide standards were obtained from ULTRA® Scientific (North Kingstown, RI). Rice samples were purchased from local grocery stores in Ontario, Canada. Different rice samples such as brown rice, black rice and white rice (including Jasmine, Basmati and Calrose) as well as two brands of organic rice samples were tested. These rice samples were originally produced in Thailand, Vietnam, India, Italy and the U.S. Rice samples were prepared according to a published procedure with minor modifications using QuEChERS kits (AOAC 2007.01 method) without dispersive SPE clean-up.<sup>10</sup> One (1) µL of extract was injected directly onto the QSight LC/MS/MS system for quantification.

An organic brown rice sample was used as a controlled blank matrix. Recoveries from the rice sample matrix were evaluated by fortifications of pesticides at concentrations of 10 and 100 µg/kg. Calibration curves were built by eight levels of standards prepared in a neat solution (acetonitrile) and in the rice sample matrix (matrix-matched calibration). Matrix effects were evaluated by comparing the slopes of calibration curves obtained from the neat solution and rice sample matrix. To reduce false positives and negatives, at least two MRM transitions were monitored for each pesticide. LOQs (limits of quantification) were calculated based on a minimum S/N of 10 for both transitions.<sup>12</sup>

#### LC Method and MS Source Conditions

The LC method and MS source parameters are shown in Table 1. A partial list of the multiple reaction monitoring mode (MRM) transitions of the studied pesticides are shown in Table 2. The acquisition MS method is generated automatically by selecting the pesticides of interest from the built-in compound library in the time-managed-MRM module of the Simplicity software, including both positive and negative analytes.

#### Table 1. LC Method and MS Source Conditions.

| LC Conditions            |                                                                                                                                                                                            |  |  |  |  |  |  |  |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| LC Column                | Brownlee, SPP Phenyl-Hexyl,<br>100 x 2.1 mm, 2.7 μm                                                                                                                                        |  |  |  |  |  |  |  |
| Mobile Phase A           | 5 mM ammonium formate in water                                                                                                                                                             |  |  |  |  |  |  |  |
| Mobile Phase B           | 5 mM ammonium formate in methanol                                                                                                                                                          |  |  |  |  |  |  |  |
| Mobile<br>Phase Gradient | Start at 10% mobile phase B and hold it for<br>1 min., then increase B to 95% in 15 min. and<br>keep at 95% B for 2 min. Finally equilibrate the<br>column at initial condition for 3 min. |  |  |  |  |  |  |  |
| Column Oven Temperature  | 40 °C                                                                                                                                                                                      |  |  |  |  |  |  |  |
| Auto Sampler Temperature | 15°C                                                                                                                                                                                       |  |  |  |  |  |  |  |
| Injection Volume         | 1.0 µL                                                                                                                                                                                     |  |  |  |  |  |  |  |
| MS Source Conditions     |                                                                                                                                                                                            |  |  |  |  |  |  |  |
| ESI Voltage (Positive)   | 5000 V                                                                                                                                                                                     |  |  |  |  |  |  |  |
| ESI Voltage (Negative)   | -4000V                                                                                                                                                                                     |  |  |  |  |  |  |  |
| Drying Gas               | 140                                                                                                                                                                                        |  |  |  |  |  |  |  |
| Nebulizer Gas            | 350                                                                                                                                                                                        |  |  |  |  |  |  |  |
| Source Temperature       | 325 °C                                                                                                                                                                                     |  |  |  |  |  |  |  |
| HSID Temperature         | 200 °C                                                                                                                                                                                     |  |  |  |  |  |  |  |
| Detection mode           | Time-managed MRM <sup>™</sup>                                                                                                                                                              |  |  |  |  |  |  |  |

#### **Results and Discussion**

#### Analytical Challenges for Multi-residue Pesticides Analysis in Food Samples

Since the pesticides tested in this study contain both polar and non-polar compounds, to extract all the analytes from sample matrices, acetonitrile, an organic solvent, was used. However, the reverse phase LC method used aqueous mobile phase at the beginning of the LC run to retain the polar compounds on the column. Injecting a larger volume of organic solvent such as an acetonitrile sample extract on the LC would lead to poor chromatographic peaks for early eluting polar compounds. To overcome this problem, small sample volume was injected in this study.

Traditional MRM method development is not suitable for analysis of a large number of analytes such as hundreds of pesticide residues in a single run. It is both time-consuming and labor intensive to input all the mass transitions to a method manually. In addition, the dwell time for each transition cannot be optimized easily by traditional method. Therefore, a time-managed-MRM was applied for method development in this study to improve efficiency, data quality and method performance.

Sample matrix effect is the main concern for LC/MS/MS method development, especially for food analysis due to the diversity and complexity of food sample matrices. To overcome sample matrix effects, several approaches have been used, such as sample dilution, use of stable isotope internal standards, matrix-matched calibration, standard addition, sample clean-up, use of high efficiency columns for improved separation, and the use of alternative ionization sources.<sup>11</sup> In this study, sample matrix effects were evaluated by comparing the slopes (X) of calibration curves obtained from standards prepared in solvent (neat

solution) with slopes (Y) obtained from standards prepared in the rice sample matrix. Sample matrix effect (%) can be calculated by the percentage difference between the slopes, i.e.  $(Y-X) \times 100/X$ . When the percentage of the difference between the slopes of the two curves is positive, there is a signal enhancement effect, whereas a negative value indicates signal suppression effect. As shown in Table 3 and Figures 1 and 2, sample matrix effects are compound dependent. For example, some pesticides, such as acephate and propiconazole, showed signal enhancement (positive values), while others, such as chlorpyriphos and tricyclazole, showed ion suppression (negative values). As shown in Table 3, sample matrix effects for most of the pesticides studied are less than 20% and thus, calibration curves built from neat solutions could be used for their guantification without significant error according to EU regulation.<sup>12</sup> However, significant ion suppression effects were observed for chlorpyriphos (-55%) and tebuconazole (-18%). Therefore, to overcome matrix effects and reduce variations in analytical results, matrix-matched calibrations were used in this study for quantification of all analytes.

#### **Method Performance**

All calibration curves built from both the neat solution and rice sample matrix (matrix-matched calibration) showed good linearity (0.1 to 200 ng/mL) with correlation coefficient (R<sup>2</sup>) larger than 0.99 (see Figures 1 and 2 for typical examples of calibration curves).

The recoveries of pesticides were evaluated by spiking the analytes to the samples at two concentration levels of 10 and 100 µg/kg, respectively. As shown in Table 3, the recoveries of analytes ranged from 70% to 120% with RSD < 20% for most of the pesticides studied.

The limits of quantification (LOQs) were determined by taking into account the signals of both quantifier and qualifier ions (S/N > 10 for both) and ensuring that the product ion ratios were within 20% tolerance windows of the expected.<sup>12</sup> Most of the tested pesticides have LOQs ranging from 0.5 to 20 µg/kg, which are well below the EU MRLs.

| Table 2. MRM Transitions (partial list of the 213 pesticides studied). |          |          |         |     |          |      |  |  |  |
|------------------------------------------------------------------------|----------|----------|---------|-----|----------|------|--|--|--|
| Compound Name                                                          | Polarity | Q1 Mass  | Q2 Mass | CE  | EV       | CCL2 |  |  |  |
| Acephate                                                               | Positive | 184.1    | 143.1   | -12 | 25       | -29  |  |  |  |
| Acephate-2                                                             | Positive | 184.1    | 125.1   | -25 | 25       | -41  |  |  |  |
| Acetamiprid                                                            | Positive | 223.2    | 126.1   | -30 | 25       | -49  |  |  |  |
| Acetamiprid-2                                                          | Positive | 223.2    | 99.1    | -56 | 25       | -73  |  |  |  |
| Azoxystrobin                                                           | Positive | 404.1    | 372.1   | -18 | 25       | -57  |  |  |  |
| Azoxystrobin-2                                                         | Positive | 404.1    | 344.1   | -34 | 25       | -71  |  |  |  |
| Buprofezin                                                             | Positive | 306.2    | 201.1   | -18 | 25       | -47  |  |  |  |
| Buprofezin-2                                                           | Positive | 306.2    | 116.2   | -24 | 25       | -52  |  |  |  |
| Chlorantranilprole                                                     | Positive | 484      | 452.8   | -20 | 25       | -66  |  |  |  |
| Chlorantranilprole-2                                                   | Positive | 484      | 285.8   | -18 | 25       | -65  |  |  |  |
| Chlorpyriphos                                                          | Positive | 350      | 198     | -20 | 25       | -53  |  |  |  |
| Chlorpyriphos-2                                                        | Positive | 350      | 97      | -32 | 25       | -64  |  |  |  |
| Clothianidin                                                           | Positive | 250.1    | 169.1   | -16 | 25       | -39  |  |  |  |
| Clothianidin -2                                                        | Positive | 250.1    | 132.2   | -26 | 25       | -48  |  |  |  |
| Cumyluron                                                              | Positive | 303.1    | 185     | -20 | 25       | -48  |  |  |  |
| Cumyluron-2                                                            | Positive | 303.1    | 125     | -43 | 25       | -69  |  |  |  |
| Fenbutatin-oxide                                                       | Positive | 519.3    | 197     | -67 | 25       | -112 |  |  |  |
| Fenbutatin-oxide-2                                                     | Positive | 519.3    | 350.9   | -50 | 25       | -97  |  |  |  |
| Fenobucarb                                                             | Positive | 208      | 152     | -12 | 25       | -32  |  |  |  |
| Fenobucarb-2                                                           | Positive | 208      | 95      | -19 | 25       | -38  |  |  |  |
| Fluopyram                                                              | Positive | 397      | 173     | -35 | 25       | -71  |  |  |  |
| Fluopyram-2                                                            | Positive | 397      | 145     | -70 | 25       | -103 |  |  |  |
| Halofenozide                                                           | Positive | 331.1    | 275     | -18 | 25       | -49  |  |  |  |
| Halofenozide-2                                                         | Positive | 331.1    | 104.9   | -25 | 25       | -56  |  |  |  |
| Imazalil                                                               | Positive | 297.1    | 201     | -25 | 25       | -52  |  |  |  |
| Imazalil-2                                                             | Positive | 297.1    | 159.2   | -31 | 25       | -58  |  |  |  |
| Imidachloprid                                                          | Positive | 256.2    | 175.2   | -26 | 25       | -49  |  |  |  |
| Imidachloprid-2                                                        | Positive | 256.2    | 209     | -18 | 25       | -42  |  |  |  |
| Isoprothiolane                                                         | Positive | 291.1    | 231     | -16 | 25       | -44  |  |  |  |
| Isoprothiolane-2                                                       | Positive | 291.1    | 189     | -28 | 25       | -54  |  |  |  |
| Malathion                                                              | Positive | 331.1    | 127.1   | -22 | 25       | -53  |  |  |  |
| Malathion-2                                                            | Positive | 331.1    | 99.1    | -24 | 25       | -55  |  |  |  |
| Methamidophos                                                          | Positive | 142      | 124.9   | -20 | 25       | -32  |  |  |  |
| Methamidophos-2                                                        | Positive | 142      | 94.1    | -20 | 25       | -32  |  |  |  |
| Piperonyl butoxide                                                     | Positive | 356.2    | 177     | -13 | 25       | -47  |  |  |  |
| Piperonyl butoxide-2                                                   | Positive | 356.2    | 119     | -37 | 25       | -69  |  |  |  |
| Pirimiphos-methyl                                                      | Positive | 306.1    | 164.1   | -28 | 25       | -56  |  |  |  |
| Pirimiphos-methyl-2                                                    | Positive | 306.1    | 108.1   | -40 | 25       | -67  |  |  |  |
| Protenophos                                                            | Positive | 3/5      | 304.8   | -50 | 25       | -/5  |  |  |  |
| Protenophos-2                                                          | Positive | 3/5      | 346.8   | -42 | 25       | -113 |  |  |  |
| Propiconazole                                                          | Positive | 342.1    | 159.1   | -42 | 25       | -/2  |  |  |  |
| Propiconazoie-2                                                        | Positive | 342.1    | 69.1    | -26 | 25       | -58  |  |  |  |
|                                                                        | Positive | 308      | /0      | -30 | 25       | -58  |  |  |  |
|                                                                        | Positive | 308      | 125     | -50 | 25       | -/6  |  |  |  |
| Thiamethoxam                                                           | Positive | 292      | 181     | -28 | 25       | -54  |  |  |  |
| Inlametnoxam-2                                                         | Positive | 292      | 211     | -18 | 25       | -45  |  |  |  |
|                                                                        | POSITIVE | 314.1    | 110.9   | -22 | 25       | -51  |  |  |  |
| Tricyclazala                                                           | Positive | 3 I 4. I | 162     | -50 | 25       | -/6  |  |  |  |
|                                                                        | Positive | 190      | 105     | -28 | 20       | -44  |  |  |  |
| Triflow/strobin                                                        | Positivo | 190      | 100     | -30 | 25       | -51  |  |  |  |
| Triflowstrohin                                                         | Positive | 409      | 100     | -20 | 20       | -04  |  |  |  |
| Eludiovenil                                                            | Negotius | 409      | 125.0   | -20 | 25<br>25 | -59  |  |  |  |
| Fludioxonil 2                                                          | Negativo | 240.0    | 125.9   | 20  | -25      | 60   |  |  |  |
|                                                                        | neudlive | 240.0    | 1/9.9   | 22  | -20      | 00   |  |  |  |



*Figure 1.* Calibration curves for acephate (A), chlorpyriphos (B), propiconazole (C) and tricyclazole (D) obtained from standards prepared in neat solutions (analyte concentrations range from 0.1 to 200 ng/mL).



*Figure 2*. Calibration curves for acephate (A), chlorpyriphos (B), propiconazole (C) and tricyclazole (D) obtained from standards prepared in rice sample matrix (analyte concentrations range from 0.1 to 200 ng/mL).

Table 3. Results of retention time, recovery, reproducibility (%RSD), matrix effect and linearity for the most commonly detected pesticides in rice samples.

| Pesticide Retention Time (min) |       | % Recovery(%RSD)<br>at 10 μg/kg | % Recovery (%RSD)<br>at 100μg/kg | Matrix Effect<br>(%) | Correlation Coefficient<br>(R <sup>2</sup> ) |  |  |
|--------------------------------|-------|---------------------------------|----------------------------------|----------------------|----------------------------------------------|--|--|
| Acephate                       | 1.88  | 101.1 (11.8)                    | 81.9 (4.3)                       | 14.0                 | 0.9997                                       |  |  |
| Acetamiprid                    | 8.15  | 106.5 (2.6)                     | 98.7 (2.3)                       | 2.7                  | 0.9996                                       |  |  |
| Buprofezin                     | 15.05 | 103.3 (2.9)                     | 98.8 (3.5)                       | -3.1                 | 0.9996                                       |  |  |
| Chlorpyriphos                  | 15.54 | 109.6 (10.4)                    | 98.7 (5.0)                       | -55.0                | 0.9991                                       |  |  |
| Clothianidin                   | 6.70  | 105.7 (5.9)                     | 111.2 (8.6)                      | 17.0                 | 0.9995                                       |  |  |
| Cumyluron                      | 12.74 | 98.9 (7.2)                      | 96.1 (2.5)                       | -2.6                 | 0.9984                                       |  |  |
| Fenbutatin-oxide               | 16.90 | 69.5 (18.6)                     | 78.8 (12.7)                      | 13.1                 | 0.9997                                       |  |  |
| Fenobucarb                     | 11.20 | 101.6 (2.9)                     | 94.8 (1.9)                       | 2.6                  | 0.9976                                       |  |  |
| Fluopyram                      | 13.00 | 104.8 (3.6)                     | 101.1 (3.1)                      | -2.7                 | 0.9991                                       |  |  |
| Halofenozide                   | 12.26 | 89.4 (15.2)                     | 88.3 (11.4)                      | -4.4                 | 0.9980                                       |  |  |
| Imazalil                       | 14.33 | 89.6 (13.6)                     | 95.3 (4.1)                       | -6.1                 | 0.9996                                       |  |  |
| Imidacloprid                   | 7.57  | 77.5 (10.8)                     | 112.2 (7.9)                      | -5.7                 | 0.9991                                       |  |  |
| Isoprothiolane                 | 13.01 | 111.5 (2.7)                     | 101.1 (2.3)                      | -0.4                 | 0.9983                                       |  |  |
| Malathion                      | 13.25 | 92.0 (12.0)                     | 86.0 (4.3)                       | -9.9                 | 0.9995                                       |  |  |
| Methamidophos                  | 1.41  | 82.8 (10.1)                     | 76.4 (14.3)                      | 13.3                 | 0.9978                                       |  |  |
| Piperonyl Butoxide             | 15.26 | 106.0 (5.0)                     | 105.2 (3.4)                      | -6.3                 | 0.9977                                       |  |  |
| Pirimiphos-methyl              | 14.71 | 107.5 (3.7)                     | 98.8 (5.3)                       | -0.1                 | 0.9997                                       |  |  |
| Profenophos                    | 14.82 | 110.7 (6.9)                     | 103.0 (6.5)                      | -2.5                 | 0.9988                                       |  |  |
| Propiconazole                  | 14.32 | 106.6 (7.1)                     | 98.3 (2.8)                       | 1.5                  | 0.9994                                       |  |  |
| Tebuconazole                   | 13.72 | 102.2 (6.9)                     | 104.2 (5.5)                      | -18.9                | 0.9993                                       |  |  |
| Thiamethoxam                   | 6.43  | 116.4 (10.0)                    | 114.0 (14.9)                     | 1.9                  | 0.9991                                       |  |  |
| Triazophos                     | 13.46 | 117.8 (5.7)                     | 99.5(3.0)                        | 2.7                  | 0.9979                                       |  |  |
| Tricyclazole                   | 9.27  | 84.2 (5.8)                      | 80.7 (7.8)                       | -7.5                 | 0.9998                                       |  |  |
| Trifloxystrobin                | 14.91 | 106.7 (2.4)                     | 106(4)                           | -5.8                 | 0.9991                                       |  |  |

#### Sample Analysis

The developed method was applied for the analysis of pesticide residues in different food samples, including eleven rice samples; one wheat sample and one veggie straw sample. Figure 3 showed the overlapped MRM chromatograms of pesticides identified and guantified from a brown rice sample. Table 4 lists the pesticide residues determined in the eleven rice samples and the EU MRLs in µg/kg (NA\*; some pesticides that are not included in the EU MRLs list were also determined by this method). As shown in Table 4, many of the pesticides identified from sample 4 (S4) and sample 10 (S10) are quite similar because these two rice samples were produced from the same region, which indicates that pesticides applied to rice crops during production are country or region specific due to the regulation and weather conditions in that region.

#### Conclusion

A LC/MS/MS method for multi- residue pesticides analysis in rice was developed by coupling a UHPLC system to a QSight 220 triple-quad mass spectrometer. The method can be applied for the analysis of over 200 pesticides in rice with LOQs well below the limits set by regulatory agencies. The time-managed-MRM module has simplified the creation of MS method with optimum dwell time for monitoring a large number of analytes in food samples. The QuEChERS



*Figure 3.* Pesticides determined from a brown rice sample (S10): thiamethoxam (1), clothianidin (2), imidacloprid (3), acetamiprid (4), tricyclazole (5), isoprothiolane (6), triazophos (7), tebuconazole (8), imazalil (9), propiconazole (10), profenophos (11), trifloxystrobin (12), buprofezin (13), and chlorpyriphos (14).

sample extraction utilized in this study demonstrated good recovery (70-120%) and reproducibility (RSD <20%) for most pesticides. The developed method showed excellent linearity with  $R^2 > 0.99$  for all the studied pesticides in rice matrix. A number of pesticide residues were identified and quantified from eleven rice samples with concentrations at or below the EU MRLs. This LC/MS/MS method has also been applied for other food analyses such as wheat and veggie strews samples with good performance. The method presented here can be easily adapted for multi-analyte screening and quantification, providing a single method for more cost-effective analysis of pesticides in rice and other food samples.

*Table 4.* Pesticide residues determined from eleven rice samples (S1 to S11), in µg/kg.

| <b>S1</b> | <b>S</b> 2 | <b>S</b> 3 | <b>S</b> 4                                                                                                                                                                                                               | S5                                                                                                                                                                                                                                   | <b>S</b> 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>S</b> 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>S</b> 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>S</b> 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S10                                                                                                                                                                                                                                                 | S11                   | MRL                      |
|-----------|------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------------|
|           |            |            | 2.0                                                                                                                                                                                                                      |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                     |                       | 10                       |
|           |            |            |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.8                                                                                                                                                                                                                                                 |                       | 10                       |
|           |            |            | 9.1                                                                                                                                                                                                                      |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 46.5                                                                                                                                                                                                                                                |                       | 500                      |
|           |            |            | 0.5                                                                                                                                                                                                                      | 0.3                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.7                                                                                                                                                                                                                                                 |                       | 50                       |
|           |            |            | 7.0                                                                                                                                                                                                                      |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.0                                                                                                                                                                                                                                                 |                       | 500                      |
|           |            |            | 4.1                                                                                                                                                                                                                      |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                     |                       | NA*                      |
|           |            |            |                                                                                                                                                                                                                          | 0.5                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                     |                       | 10                       |
|           |            |            |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                      | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                     |                       | NA*                      |
| 1.4       |            |            | 2.5                                                                                                                                                                                                                      |                                                                                                                                                                                                                                      | 4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.6                                                                                                                                                                                                                                                 | 1.6                   | 50                       |
|           |            |            | 2.8                                                                                                                                                                                                                      |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.2                                                                                                                                                                                                                                                 |                       | 1500                     |
|           |            |            | 4.4                                                                                                                                                                                                                      | 9.3                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14.7                                                                                                                                                                                                                                                |                       | 5000                     |
|           |            |            |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                     |                       | 8000                     |
|           |            |            | 0.5                                                                                                                                                                                                                      |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                     |                       | 10                       |
|           | 0.6        | 1.3        |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                     |                       | NA*                      |
|           |            | 1.4        |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                     |                       | 500                      |
|           |            |            |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.2                                                                                                                                                                                                                                                 |                       | 10                       |
|           |            |            | 8.3                                                                                                                                                                                                                      | 8.4                                                                                                                                                                                                                                  | 6.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18.1                                                                                                                                                                                                                                                |                       | 1500                     |
|           |            |            | 5.9                                                                                                                                                                                                                      | 5.2                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12.0                                                                                                                                                                                                                                                |                       | 1000                     |
|           |            |            | 10.6                                                                                                                                                                                                                     |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11.0                                                                                                                                                                                                                                                |                       | 10                       |
|           |            |            | 0.6                                                                                                                                                                                                                      |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17.6                                                                                                                                                                                                                                                |                       | 20                       |
|           |            | 16.4       | 5.8                                                                                                                                                                                                                      | 7.6                                                                                                                                                                                                                                  | 20.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40.2                                                                                                                                                                                                                                                |                       | 1000                     |
|           |            |            |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.6                                                                                                                                                                                                                                                 |                       | 5000                     |
|           | S1         | S1 S2<br>  | S1 S2 S3   I I I   I I I   I I I   I I I   I I I   I I I   I I I   I I I   I I I   I I I   I I I   I I I   I I I   I I I   I I I   I I I   I I I   I I I   I I I   I I I   I I I   I I I   I I I   I I I   I I I   I I I | S2 S3 S4   I I 2.0   I I 9.1   I I 0.5   I I 7.0   I I I 1.1   I I I 1.1   I I I I 1.1   I I I I I   I I I I I   I I I I I   I I I I I I   I I I I I I I   I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I | S2 S3 S4 S5   I I I I I   I I I I I I   I I I I I I I   I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I <td>S2S3S4S5S6IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII<tdi< td="">IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII<td< td=""><td>S1S2S3S4S5S6S7II2.0IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII<td< td=""><td>S1S2S3S4S5S6S7S8II2.0IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII<td>S1S2S3S4S5S6S7S8S9112.011.31.41.41.4111111.41.41.4110.50.31.41.41.41.411111.41.41.41.411111.41.41.41.4111111.41.41.41111111.41.411111111.411111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111&lt;</td><td>S1S2S3S4S5S6S7S8S9S10</td><td>S1S2S3S4S5S6S7S8S9S10S11</td></td></td<></td></td<></tdi<></td> | S2S3S4S5S6IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII <tdi< td="">IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII<td< td=""><td>S1S2S3S4S5S6S7II2.0IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII<td< td=""><td>S1S2S3S4S5S6S7S8II2.0IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII<td>S1S2S3S4S5S6S7S8S9112.011.31.41.41.4111111.41.41.4110.50.31.41.41.41.411111.41.41.41.411111.41.41.41.4111111.41.41.41111111.41.411111111.411111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111&lt;</td><td>S1S2S3S4S5S6S7S8S9S10</td><td>S1S2S3S4S5S6S7S8S9S10S11</td></td></td<></td></td<></tdi<> | S1S2S3S4S5S6S7II2.0IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII <td< td=""><td>S1S2S3S4S5S6S7S8II2.0IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII<td>S1S2S3S4S5S6S7S8S9112.011.31.41.41.4111111.41.41.4110.50.31.41.41.41.411111.41.41.41.411111.41.41.41.4111111.41.41.41111111.41.411111111.411111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111&lt;</td><td>S1S2S3S4S5S6S7S8S9S10</td><td>S1S2S3S4S5S6S7S8S9S10S11</td></td></td<> | S1S2S3S4S5S6S7S8II2.0IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII <td>S1S2S3S4S5S6S7S8S9112.011.31.41.41.4111111.41.41.4110.50.31.41.41.41.411111.41.41.41.411111.41.41.41.4111111.41.41.41111111.41.411111111.411111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111&lt;</td> <td>S1S2S3S4S5S6S7S8S9S10</td> <td>S1S2S3S4S5S6S7S8S9S10S11</td> | S1S2S3S4S5S6S7S8S9112.011.31.41.41.4111111.41.41.4110.50.31.41.41.41.411111.41.41.41.411111.41.41.41.4111111.41.41.41111111.41.411111111.411111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111< | S1S2S3S4S5S6S7S8S9S10 | S1S2S3S4S5S6S7S8S9S10S11 |

References

- Commission Regulation (EC) 396/2005 on maximum residue levels of pesticides in or on food and feed of plant and animal origin, J. Eur. Union. L70/1 (2005).
- U.S. Environmental Protection Agency, Electronic code of federal regulation: Title 40: part 180-tolerance and exemptions for pesticide chemical residues in Food. http://www.ecfr.gov/cgibin/text-idx?c=ecfr&tpl=/ecfrbrowse/ Title40/40cfr180 main\_02.tpl
- 3. China National Standard GB 28260-2011. 2011. Maximum residue limits for 85 pesticides in food, Ministry of Health of the People's Republic of China.
- X. Hou, M. Han, X. Dai, X-F. Yang and S. Yi, A multi- residue method for the determination of 124 pesticides in rice by modified QuEChERS extraction and GC-MS/MS. Food Chemistry, 2013, 138, 1198-1205.
- M. Kirchner, E. Matisova, S. Hrouzkova, and J. D. Zeeuw, Possibilities and limitations of quadrupole mass spectrometric detector in fast gas chromatography. J. Chromatogr. A, 2005, 1090 (1-2), 126–132.

NA\*: pesticides not listed in the EU MRLs database, but can be determined by this method.

- 6. J. Wu, Quantitative Method for the Analysis of Tobacco-Specific Nitrosamines in Cigarette Tobacco and Mainstream Cigarette Smoke by Use of Isotope Dilution Liquid Chromatography Tandem Mass Spectrometry, Anal. Chem., 2008, 80 (4), 1341–1345.
- K. Zhang, M.R. Schaab, G. Southwood, E.R. Tor, L.S. Aston, W. Song, B. Eitzer, S. Majumdar, T. Lapainus, H. Mai, K. Tran, A. El-Demerdash, V. Vega, Yanxuan Cai, J.W. Wong, A.J. Krynitsky, and T.H. Begley, A Collaborative Study: Determination of Mycotoxins in Corn, Peanut Butter, and Wheat Flour Using Stable Isotope Dilution Assay (SIDA) and Liquid Chromatography–Tandem Mass Spectrometry (LC-MS/MS), J. Agric. Food Chem. 2017, 65 (33), 7138-7152.
- 8. A. Wilkowska and M. Biziuk, Determination of pesticide residues in food matrices using the QuEChERS methodology, Food Chemistry, 2011, 125, 803-812.
- 9. L. Pareja, A.R. Fernandez-Alba, V. Cesio and H. Heinzen, Analytical methods for pesticide residues in rice, Trends in Anal. Chem. 2011, 30 (2), 270-291.
- 10. L. Pareja, V. Cesio, H. Heinzen and A.R. Fernandez-Alba, Evaluation of various QuEChERS based methods for the analysis of herbicides and other commonly used pesticides in polished rice by LC-MS/MS, Talanta, 2011, 83, 1613-1622.
- 11. A. J. Krynitsky, J. W. Wong, K. Zhang and H. Safarpour, Focus on Food Analysis: Important considerations regarding matrix effects when developing reliable analytical residue methods using mass spectrometry, LCGC North America, 2017, Vol. 35, No. 7, 444-451.
- 12. European Commission, SANCO. 2015. Guidance document on analytical quality control and method validation procedures for pesticides residues analysis in food and feed, SANTE/11945/2015 https://ec.europa.eu/food/sites/food/files/plant/docs/pesticides\_mrl\_guidelines\_wrkdoc\_11945.pdf.

PerkinElmer, Inc. 940 Winter Street Waltham, MA 02451 USA P: (800) 762-4000 or (+1) 203-925-4602 www.perkinelmer.com



For a complete listing of our global offices, visit www.perkinelmer.com/ContactUs

Copyright ©2017, PerkinElmer, Inc. All rights reserved. PerkinElmer® is a registered trademark of PerkinElmer, Inc. All other trademarks are the property of their respective owners.

PKI